
INTRODUCTION TO AMD GPU

PROGRAMMING WITH HIP

Paul Bauman, Noel Chalmers, Nick Curtis, Chip Freitag, Joe Greathouse, Nicholas Malaya, Damon McDougall, Scott Moe, René van Oostrum,
Noah Wolfe, Gina Sitaraman

2 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Agenda

▪ A Mile-High View of GPU Acceleration (10 minutes)

▪ GPU Hardware (5 minutes)

▪ GPU Programming Concepts (45 minutes)

3 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Comments

Please feel free to ask questions during the presentation in the
chat and the moderator will help flag the speaker

(and maybe some AMD people will answer in the chat)

A Mile-High Overview of GPU Acceleration

5 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

CPU Processor

Illustration of a CPU+GPU Heterogeneous System

CPU’s Memory

CPU Core 0 C
o
re

 1

C
o
re

 2

C
o
re

 3

C
o
re

 n

Memory Controller & I/O

 1-8 wide vector →

 1-8 wide vector →
…

GPU

GPU’s Memory

6 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

CPU Parallelism Can Accelerate Applications

Single CPU Case:

Multi-CPU Case:

Time

CPU

Time

CPU0

CPU1

CPU2

CPU3

Run some computation in parallel Runtime decrease

Performance increase parallel region is limited by:

• #CPU cores that can operate in parallel

• Computational throughput of each CPU core

• Memory bandwidth available to the CPU cores

• Latency hiding capability of the CPU cores

7 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

GPUs can Accelerate Parallel Regions

Time

CPU

GPU

GPU computation Runtime decrease

◢ 1000s of cores for computation

◢ Higher memory bandwidth to HBM

◢ Multiple GPUs per system

◢ Latency hiding mechanisms available

8 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Multiple GPUs can Further Increase Performance

Time

CPU

GPU

CPU

GPU0

GPU1

GPU3

GPU2

9 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

CPU Processor

GPU

GPU’s Memory

Taking Advantage of GPU Memory BW Requires Moving Data to GPU

CPU’s Memory

CPU Core 0 C
o
re

 1

C
o
re

 2

C
o
re

 3

C
o
re

 n

Memory Controller & I/O

 1-8 wide vector →

 1-8 wide vector →
…

Want to take
advantage of these
memory channels

Thus need to move data
between CPU & GPU memory

Interconnect
performance can

therefore matter for
total performance

May also need
to move data

between GPUs

10 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Computation and Communication Must Both Happen

Time

CPU

GPU 0

C↔G0

GPU 1

C↔G1

G0↔G1

11 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

All of the Things in This Task Graph can be Overlapped

Time

CPU

GPU 0

C↔G0

GPU 1

C↔G1

G0↔G1

AMD GCN GPU Hardware

13 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD GCN GPU Hardware Layout

Command Processor

Shader Engine

(SE0)

Shader Engine

(SE3)

Shader Engine

(SE1)

Shader Engine

(SE2)

14 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD GCN GPU Hardware Layout

Command Processor

Workload

Manager

Workload

Manager

Workload

Manager

Workload

Manager

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

Command Queue Command Queue
Queues reside in

user-visible DRAM

15 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Hardware Configuration Parameters on Modern

AMD GPUs
GPU SKU Shader Engines CUs / SE

AMD Instinct™ MI100 8 15

AMD Radeon Instinct™ MI60 4 16

AMD Radeon Instinct™ MI50 4 15

AMD Radeon™ VII 4 15

AMD Radeon Instinct™ MI25

AMD Radeon™ Vega 64

4 16

AMD Radeon™ Vega 56 4 14

AMD Radeon Instinct™ MI6 4 9

AMD Ryzen™ 5 2400G 1 11

AMD GPU Compute Terminology

17 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Overview of GPU Kernels

GPU Kernel

Functions launched to the GPU that are executed by multiple parallel

workers

Examples: GEMM, triangular solve, vector copy, scan,

convolution

18 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Overview of GPU Kernels

GPU Kernel

Workgroup 0

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Group of threads that are on the GPU at the same time

Also on the same compute unit

Can synchronize together and communicate through memory in the CU

Programmer controls the number of workgroups – it’s usually a function of problem size

CUDA

Terminology

Thread Block

19 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Overview of GPU Kernels

GPU Kernel

Workgroup 0
Wavefront

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Collection of resources that execute in lockstep, run the same

instructions, and follow the same control-flow path. Individual lanes can

be masked off

Can think of this as a vectorized thread

CUDA

Terminology

Warp

20 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Overview of GPU Kernels

GPU Kernel

Workgroup 0

Wavefront 0 Wavefront 1 … Wavefront

1564 work items (threads)

Workgroup 1

Workgroup 2

Workgroup 3

Workgroup 4

…

Workgroup n

Number of wavefronts / workgroup is chosen by developer

GCN hardware allows up to 16 wavefronts in a workgroup

21 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Scheduling work to a GPU

Command Processor

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

CU
CU
CU
CU
CU
CU
CU
CU

Command Queue

Workload

Manager

Workload

Manager

Workload

Manager

Workload

Manager

22 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Software Terminology
Nvidia/CUDA

Terminology

AMD

Terminology
Description

Streaming

Multiprocessor

Compute Unit

(CU)

One of many parallel vector processors in a GPU that contain parallel ALUs.

All waves in a workgroups are assigned to the same CU.

Kernel Kernel Functions launched to the GPU that are executed by multiple parallel

workers on the GPU. Kernels can work in parallel with CPU.

Warp Wavefront Collection of operations that execute in lockstep, run the same instructions,

and follow the same control-flow path. Individual lanes can be masked off.

Think of this as a vector thread. A 64-wide wavefront is a 64-wide vector op.

Thread Block Workgroup Group of wavefronts that are on the GPU at the same time. Can synchronize

together and communicate through local memory.

Thread Work Item /

Thread

Individual lane in a wavefront. On AMD GPUs, must run in lockstep with

other work items in the wavefront. Lanes can be individually masked off.

GPU programming models can treat this as a separate thread of execution,

though you do not necessarily get forward sub-wavefront progress.

23 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Software Terminology

Nvidia/CUDA

Terminology

AMD

Terminology
Description

Global Memory Global Memory Device DRAM memory accessible by the GPU that goes through some

layers cache

Shared Memory Local Memory Scratchpad that allows communication between wavefronts in a

workgroup

Local Memory Private Memory Per-thread private memory, often mapped to registers

AMD GPU Programming Concepts

Programming with HIP: Kernels, blocks, threads, and more

25 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

What is HIP?
AMD’s Heterogeneous-compute Interface for Portability,

or HIP, is a C++ runtime API and kernel language that

allows developers to create portable applications that

can run on AMD’s accelerators as well as CUDA devices

HIP:

◢ Is open-source

◢ Provides an API for an application to leverage GPU

acceleration for both AMD and CUDA devices

◢ Syntactically similar to CUDA. Most CUDA API calls

can be converted in place: cuda -> hip

◢ Supports a strong subset of CUDA runtime

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

26 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

A Tale of Host and Device

◢ The Host is the CPU

◢ Host code runs here

◢ Usual C++ syntax and features

◢ Entry point is the ‘main’ function

◢ HIP API can be used to create device buffers,

move between host and device, and launch device

code

◢ The Device is the GPU

◢ Device code runs here

◢ C-like syntax

◢ Device codes are launched via “kernels”

◢ Instructions from the Host are enqueued into

“streams”

Source code in HIP has two flavors: Host code and Device code

27 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

HIP API

◢ Device Management:

◢ hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

◢ Memory Management

◢ hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc(), hipHostFree()

◢ Streams

◢ hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

◢ Events

◢ hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

◢ Device Kernels

◢ __global__, __device__, hipLaunchKernelGGL()

◢ Device code

◢ threadIdx, blockIdx, blockDim, __shared__

◢ 200+ math functions covering entire CUDA math library

◢ Error handling

◢ hipGetLastError(), hipGetErrorString()

Kernels, Memory, and Structure of host code

29 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Kernels: The Grid

◢ In HIP, kernels are executed on a 3D “grid”

◢ You might feel comfortable thinking in terms of a mesh of points, but it’s not

required

◢ The “grid” is what you can map your problem to

◢ It’s not a physical thing, but it can be useful to think that way

◢ AMD devices (GPUs) support 1D, 2D, and 3D grids, but most work maps well to 1D

◢ Each dimension of the grid partitioned into equal sized “blocks”

◢ Each block is made up of multiple “threads”

◢ The grid and its associated blocks are just organizational constructs

◢ The threads are the things that do the work

◢ If you’re familiar with CUDA already, the grid + block structure is very similar in HIP

30 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Kernels: The Grid

CUDA HIP OpenCL™

grid grid NDRange

block block work group

thread work item / thread work item

warp wavefront sub-group

Some Terminology:

31 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

The Grid: blocks of threads in 1D

Threads in grid have access to:

◢ Their respective block: blockIdx.x

◢ Their respective thread ID in a block: threadIdx.x

◢ Their block’s dimension: blockDim.x

◢ The number of blocks in the grid: gridDim.x

Grid of blocks

 lock of threads
Thread

32 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

The Grid: blocks of threads in 2D
◢ Each color is a block of threads

◢ Each small square is a thread

◢ The concept is the same in 1D and 2D

◢ In 2D each block and thread now has a

two-dimensional index

Threads in grid have access to:

◢ Their respective block IDs: blockIdx.x,
blockIdx.y

◢ Their respective thread IDs in a block:
threadIdx.x, threadIdx.y

◢ 3D (threadIdx.z, blockIdx.z, ..)

33 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

More info about device: rocminfo
Name: gfx908

Cache Info:

L1: 16(0x10) KB

Cacheline Size: 64(0x40)

Compute Unit: 120

SIMDs per CU: 4

Shader Engines: 8

Wavefront Size: 64(0x40)

Workgroup Max Size: 1024(0x400)

Workgroup Max Size per Dimension:

x 1024(0x400)

y 1024(0x400)

z 1024(0x400)

Max Waves Per CU: 40(0x28)

Max Work-item Per CU: 2560(0xa00)

Grid Max Size: 4294967295(0xffffffff)

Grid Max Size per Dimension:

x 4294967295(0xffffffff)

y 4294967295(0xffffffff)

z 4294967295(0xffffffff)

34 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Kernels
A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {

h_a[i] *= 2.0;

}

Can be translated into a GPU kernel:

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

▪ A device function that will be launched
from the host program is called a kernel
and is declared with the __global__
attribute

▪ Kernels should be declared void

▪ All pointers passed to kernels must point
to memory on the device (more later)

▪ All threads execute the kernel’s body
“simultaneously”

▪ Each thread uses its unique thread and
block IDs to compute a global ID

▪ There could be more than N threads in
the grid (we’ll see why in a minute)

35 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Kernels
Kernels are launched from the host:

dim3 threads(256,1,1); //3D dimensions of a block of threads

dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel, //Kernel name (__global__ void function)

blocks, //Grid dimensions

threads, //Block dimensions

0, //Bytes of dynamic LDS space (see extra slides)

0, //Stream (0=NULL stream)

N, a); //Kernel arguments

Analogous to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

36 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Working with Templated Kernels

template<typename Tdata, int index>

__global__ void myKernel(int N, Tdata* d_a) {

/* kernel code */

}

/* Host code */

int ix = 1000;

hipLaunchKernelGGL(HIP_KERNEL_NAME(MyKernel<double, ix>), blocks, threads, 0, 0, N, d_a)

37 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

◢ Blocks are dynamically scheduled onto CUs

◢ All threads in a block execute on the same CU

◢ Threads in a block share LDS memory and L1 cache

◢ Threads in a block are executed in 64-wide chunks called “wavefronts”

◢ Wavefronts execute on SIMD units (Single Instruction Multiple Data)

◢ If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to
another wavefront

A good practice is to make the block size a multiple of 64 and have several
wavefronts (e.g., 256 threads)

38 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Memory

The host instructs the device to allocate memory in VRAM and records a pointer to
device memory:

int main() {

…

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); // Allocate host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); // Allocate Nbytes on device

…

free(h_a); // Free host memory

hipFree(d_a); // Free device memory

}

39 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Memory

The host queues memory transfers:

//copy data from host to device

hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host

hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

40 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Memory

Can copy strided sections of arrays:

hipMemcpy2D(d_a, //pointer to destination

DLDAbytes, //pitch of destination array

h_a, //pointer to source

LDAbytes, //pitch of source array

Nbytes, //number of bytes in each row

Nrows, //number of rows to copy

hipMemcpyHostToDevice);

41 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Error Checking

▪ Most HIP API functions return error codes of type hipError_t
hipError_t status1 = hipMalloc(…);

hipError_t status2 = hipMemcpy(…);

▪ If API function was error-free, returns hipSuccess, otherwise returns an error code

▪ Can also peek/get at last error returned with

hipError_t status3 = hipGetLastError();

hipError_t status4 = hipPeekLastError();

▪ Can get a corresponding error string using hipGetErrorString(status). Helpful for
debugging, e.g.,

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” << hipGetErrorString(status) << std::endl; \

std::abort(); } }

42 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Management
Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running
on?

◢ Host can query number of devices visible to system:
int numDevices = 0;

hipGetDeviceCount(&numDevices);

◢ Host tells the runtime to issue instructions to a particular device:
int deviceID = 0;

hipSetDevice(deviceID);

◢ Host can query what device is currently selected:
hipGetDevice(&deviceID);

◢ The host can manage several devices by changing the default device at runtime

◢ Different processes can use different devices or/and over-subscribe (share) the same
device

43 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Device Properties

The host can also query a device’s properties:
hipDeviceProp_t props;

hipGetDeviceProperties(&props, deviceID);

◢ hipDeviceProp_t is a struct that contains useful fields like the device’s name, total

VRAM, clock speed, and GCN architecture
◢ See “hip/hip_runtime_api.h” for full list of fields

44 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Putting it all together
#include “hip/hip_runtime.h”

int main() {

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //host memory

double *d_a = NULL;

HIP_CHECK(hipSetDevice (0));

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)); //copy results back to host

…

free(h_a); //free host memory

HIP_CHECK(hipFree(d_a)); //free device memory

}

__global__ void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) {

d_a[i] *= 2.0;

}

}

#define HIP_CHECK(command) { \

hipError_t status = command; \

if (status!=hipSuccess) { \

std::cerr << “Error: HIP reports ” \
<< hipGetErrorString(status) \
<< std::endl; \

std::abort(); } }

The host waits for the kernel to finish here

Asynchronous Computing

46 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Blocking vs Nonblocking API functions

◢ The kernel launch function, hipLaunchKernelGGL, is non-blocking

◢ After sending instructions/data, the host continues to do more work (i.e. MPI) while the

device executes the kernel

◢ Multiple kernels launched on different streams can run concurrently on the same device

◢ However, hipMemcpy is blocking

◢ The data pointed to in the arguments can be accessed/modified after the function returns

◢ To make asynchronous copies, we need to allocate non-pageable host memory using

hipHostMalloc and copy using hipMemcpyAsync

hipHostMalloc (h_a, Nbytes, hipHostMallocDefault)

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

◢ Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

◢ It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of

synchronization

47 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

◢ A stream in HIP is a queue of tasks (e.g., kernels, memcpys, events)

◢ Tasks enqueued in a stream complete in order on that stream

◢ Tasks being executed in different streams are allowed to overlap and share device
resources

◢ Streams are created via:
hipStream_t stream;
hipStreamCreate(&stream);

◢ And destroyed via:
hipStreamDestroy(stream);

◢ Passing 0 or NULL as the hipStream_t argument to a function instructs the function
to execute on a stream called the ‘NULL Stream’:

◢ No task on the NULL stream will begin until all previously enqueued tasks in all
other streams have completed

◢ Blocking calls like hipMemcpy run on the NULL stream

48 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

◢ Suppose we have 4 small kernels to execute:
hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, 0, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, 0, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, 0, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, 0, 256, d_a4);

◢ Even though these kernels use only one block each, they’ll execute in serial on

the NULL stream:

NULL Stream myKernel1 myKernel2 myKernel3 myKernel4

49 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

◢With streams we can effectively share the GPU’s compute resources:
hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, stream1, 256, d_a1);

hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, stream2, 256, d_a2);

hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, stream3, 256, d_a3);

hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Check that the kernels modify different parts of memory to avoid data

races

Note 2: With large kernels, overlapping computations may not help performance

NULL Stream

Stream1

Stream2

Stream3

Stream4

myKernel1

myKernel2

myKernel3

myKernel4

50 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

◢ There is another use for streams besides concurrent kernels:

◢ Overlapping kernels with data movement

◢ AMD GPUs have separate engines for:

◢ Host->Device memcpys

◢ Device->Host memcpys

◢ Compute kernels

◢ These three different operations can overlap without dividing the GPU’s resources

◢ The overlapping operations should be in separate, non-NULL, streams

◢ The host memory should be pinned

51 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Pinned Memory
Host data allocations are pageable by default. The GPU can directly access host

data if it is pinned instead.

◢ Allocating pinned host memory:
double *h_a = NULL;

hipHostMalloc(&h_a, Nbytes);

◢ Free pinned host memory:
hipHostFree(h_a);

◢ Host<->Device effective data transfer rate increases significantly when host

memory is pinned

◢ It is good practice to allocate pinned memory for data that is frequently

transferred to/from the device

52 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream myKernel1 myKernel2 myKernel3HToD1 HToD2 HToD3 DToH1 DToH2 DToH3

53 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams
Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1

Stream2

Stream3

myKernel

1
myKernel

2
myKernel

3

HToD1

HToD2

HToD3

DToH1

DToH2

DToH3

54 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Synchronization

How do we coordinate execution on device streams with host execution? Need

some synchronization points:

◢ hipDeviceSynchronize();

◢ Heavy-duty sync point

◢ Blocks host until all work in all device streams has reported complete

◢ hipStreamSynchronize(stream);

◢ Blocks host until all work in stream has reported complete

Can a stream synchronize with another stream? For that we need ‘Events’

55 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Events

A hipEvent_t object is created on a device via:
hipEvent_t event;

hipEventCreate(&event);

We queue an event into a stream:
hipEventRecord(event, stream);

◢ The event records what work is currently enqueued in the stream

◢When the stream’s execution reaches the event, the event is considered

‘complete’

At the end of the application, event objects should be destroyed:
hipEventDestroy(event);

56 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Events
What can we do with queued events?

◢ hipEventSynchronize(event);

◢ Block host until event reports complete

◢ Only a synchronization point with respect to the stream where event was
enqueued

◢ hipEventElapsedTime(&time, startEvent, endEvent);

◢ Returns the time in ms between when two events, startEvent and endEvent,
completed

◢ Can be very useful for timing kernels/memcpys

◢ hipStreamWaitEvent(stream, event);

◢ Non-blocking for host

◢ Instructs all future work submitted to stream to wait until event reports complete

◢ Primary way we enforce an ‘ordering’ between tasks in separate streams

57 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams
A common use-case for streams is MPI traffic:

//Queue local compute kernel

hipLaunchKernelGGL(myKernel, blocks, threads, 0, computeStream, N, d_a);

//Copy halo data to host

hipMemcpyAsync(h_commBuffer, d_commBuffer, Nbytes, hipMemcpyDeviceToHost, dataStream);

hipStreamSynchronize(dataStream); //Wait for data to arrive

//Exchange data with MPI

MPI_Data_Exchange(h_commBuffer);

//Send new data back to device

hipMemcpyAsync(d_commBuffer, h_commBuffer, Nbytes, hipMemcpyHostToDevice, dataStream);

NULL Stream

computeStream

dataStream

myKernel

HToDDToH

MPI

58 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Streams

With a GPU-aware MPI stack, the Host<->Device traffic can be omitted:
//Some synchronization so that data on GPU and local compute are ready

hipDeviceSynchronize();

//Exchange data with MPI (with device pointer)

MPI_Data_Exchange(d_commBuffer, &request);

//Queue local compute kernel

hipLaunchKernelGGL(myKernel, blocks, threads, 0, computeStream, N, d_a);

//Wait for MPI request to complete

MPI_Wait(&request, &status);

NULL Stream

computeStream myKernel

MPI

Device code, Shared Memory and Thread

Synchronization

60 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Function Qualifiers

hipcc makes two compilation passes through source code. One to compile host code,
and one to compile device code.

◢ __global__ functions:

◢ These are entry points to device code, called from the host

◢ Code in these regions will execute on SIMD units

◢ __device__ functions:

◢ Can be called from __global__ and other __device__ functions.

◢ Cannot be called from host code.

◢ Not compiled into host code – essentially ignored during host compilation pass

◢ __host__ __device__ functions:

◢ Can be called from __global__, __device__, and host functions.

◢ Will execute on SIMD units when called from device code!

61 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

SIMD Execution

On SIMD units, be aware of divergence

◢ Branching logic (if – else) can be costly:

◢ Wavefront encounters an if statement

◢ Evaluates conditional

◢ If true, continues to statement body

◢ If false, also continues to statement body with all instructions replaced with

NoOps

◢ Known as ‘thread divergence’

◢ Generally, wavefronts diverging from each other is okay

◢ Thread divergence within a wavefront can impact performance

62 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

SIMD Execution

if (threadIdx.x % 2) {

a *= 2.0;

} else {

a *= 3.14;

}

//if (threadIdx.x % 2) {

NoOp;

//} else {

a *= 3.14;

//}

//if (threadIdx.x % 2) {

a *= 2.0;

//} else {

NoOp;

//}

63 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Memory declarations in Device Code
◢ malloc/free not supported in device code

◢ Variables/arrays can be declared on the stack

◢ Stack variables declared in device code are allocated in registers and are private to
each thread

◢ Threads can all access common memory via device pointers, but otherwise do not
share memory

◢ Important exception: __shared__ memory

◢ Stack variables declared as __shared__:

◢ Allocated once per block in LDS memory

◢ Shared and accessible by all threads in the same block

◢ Access is faster than device global memory (but slower than register)

◢ May be statically and/or dynamically allocated

64 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Shared Memory
__global__ void reverse(double *d_a) {

__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.

__syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

…

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), 0, 0, d_a); //Launch kernel

…

}

//something is missing here…

65 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Thread Synchronization
◢ __syncthreads():

◢ Blocks a wavefront from continuing execution until all wavefronts have reached
__syncthreads()

◢ Memory transactions made by a thread before __syncthreads() are visible to all other
threads in the block after __syncthreads()

◢ Can have a noticeable overhead if called repeatedly

◢ Best practice: Avoid deadlocks by checking that all threads in a block execute the
same __syncthreads() instruction

◢ Note 1: So long as at least one thread in the wavefront encounters __syncthreads(),
the whole wavefront is considered to have encountered __syncthreads()

◢ Note 2: Wavefronts can synchronize at different __syncthreads() instructions, and if a
wavefront exits a kernel completely, other wavefronts waiting at a __syncthreads() may
be allowed to continue

66 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

HIP API

◢ Device Management:

◢ hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

◢ Memory Management

◢ hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc(), hipHostFree()

◢ Streams

◢ hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

◢ Events

◢ hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

◢ Device Kernels

◢ __global__, __device__, hipLaunchKernelGGL()

◢ Device code

◢ threadIdx, blockIdx, blockDim, __shared__

◢ 200+ math functions covering entire CUDA math library

◢ Error handling

◢ hipGetLastError(), hipGetErrorString()

67 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

hipcc usage

Usage is straightforward. Accepts all/any flags that vanilla clang accepts, e.g.,
hipcc vectoradd_hip.cpp -o vectorAdd

Set HIPCC_VERBOSE=7 to see a bunch of useful information

◢ Compile and link lines, various paths
$ HIPCC_VERBOSE=7 hipcc -O3 vectoradd_hip.cpp
HIP_PATH=/opt/rocm-4.2.0/hip
HIP_PLATFORM=amd
HIP_COMPILER=clang
HIP_RUNTIME=rocclr
ROCM_PATH=/opt/rocm-4.2.0
HIP_ROCCLR_HOME=/opt/rocm-4.2.0/hip
HIP_CLANG_PATH=/opt/rocm-4.2.0/llvm/bin
HIP_CLANG_INCLUDE_PATH=/opt/rocm-4.2.0/llvm/lib/clang/12.0.0/include
HIP_INCLUDE_PATH=/opt/rocm-4.2.0/hip/include
HIP_LIB_PATH=/opt/rocm-4.2.0/hip/lib
DEVICE_LIB_PATH=/opt/rocm-4.2.0/amdgcn/bitcode
hipcc-args: -O3 vectoradd_hip.cpp
hipcc-cmd: "/opt/rocm-4.2.0/llvm/bin/clang" -std=c++11 -isystem "/opt/rocm-4.2.0/llvm/lib/clang/12.0.0/include/.." -isystem
/opt/rocm-4.2.0/hsa/include -isystem "/opt/rocm-4.2.0/hip/include" --offload-arch=gfx908 --offload-arch=gfx908 --offload-
arch=gfx908 --offload-arch=gfx908 --offload-arch=gfx908 --offload-arch=gfx908 --offload-arch=gfx908 --offload-arch=gfx908 -mllvm -
amdgpu-early-inline-all=true -mllvm -amdgpu-function-calls=false -fhip-new-launch-api --driver-mode=g++ -L"/opt/rocm-
4.2.0/hip/lib" -lgcc_s -lgcc -lpthread -lm -lrt -O3 -x hip vectoradd_hip.cpp -Wl,--enable-new-dtags -Wl,--rpath=/opt/rocm-
4.2.0/hip/lib:/opt/rocm-4.2.0/lib -lamdhip64 -L/opt/rocm-4.2.0/llvm/bin/../lib/clang/12.0.0/lib/linux -lclang_rt.builtins-x86_64

68 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Querying System
◢ rocminfo: Queries and displays information on the system’s hardware

◢ More info at: https://github.com/RadeonOpenCompute/rocminfo

◢ Querying ROCm version:

◢ If you install ROCm in the standard location (/opt/rocm) version info is at:
/opt/rocm/.info/version-dev

◢ Can also run the command ‘hipcc --version’ or ‘hipconfig’ to see the ROCm install directory
◢ rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

◢ sudo privileges are needed to set frequencies and power limits

◢ sudo privileges are not needed to query information

◢ Get more info by running ‘rocm-smi -h’ or looking at:
https://github.com/RadeonOpenCompute/ROC-smi

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

==

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%

1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

==

==============================End of ROCm SMI Log ==============================

https://github.com/RadeonOpenCompute/rocminfo
https://github.com/RadeonOpenCompute/ROC-smi

69 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD GPU programming resources

• ROCm platform: https://github.com/RadeonOpenCompute/ROCm/

• With instructions for installing from Debian/CentOS/RHEL binary repositories

• Has links to source repositories for all components, including HIP

• Latest documentation

• HIP porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

• ROCm/HIP libraries: https://github.com/ROCmSoftwarePlatform

• ROC-profiler: https://github.com/ROCm-Developer-Tools/rocprofiler

• Collects application traces and performance counters

• Trace timeline can be visualized with chrome://tracing

• AMD GPU ISA docs and more: https://developer.amd.com/resources/developer-
guides-manuals/

https://github.com/RadeonOpenCompute/ROCm/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCmSoftwarePlatform
https://github.com/ROCm-Developer-Tools/rocprofiler
https://developer.amd.com/resources/developer-guides-manuals/

76 | Intro to AMD GPU Programming with HIP | ORNL Hackathon, May 24 – 26, 2021 | ©2021 Advanced Micro Devices, Inc. All rights reserved.

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,

including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product

releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any

computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation

to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make

changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON

FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF

ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, Threadripper, EPYC, Infinity Fabric, and

combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

PCIe is a trademark (or registered trademark) of PCI-SIG Corporation.

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

Linux is a trademark (or registered trademark) of Linus Torvalds.

© Copyright Advanced Micro Devices, Inc, All rights reserved.

