Hewlett Packard
Enterprise

HPE CRAY MPI - SPOCK WORKSHOP

Noah Reddell (on behalf of Krishna Kandalla and MPT Team)
May 20, 2021

AGENDA

* HPE Cray MPI overview
* HPE Cray MPI tuning & placement
* GPU support in HPE Cray MPI

« Overview

o GPU-NIC Async features

COPYRIGHT HPE 2021 I 2

HPE CRAY MPI - IMPLEMENTATION OVERVIEW

3

KEY FEATURES AND OPTIMIZATIONS - HPE CRAY MPI
* Robust support for multiple GPU architectures (AMD and NVIDIA)

* Performance and scaling optimizations for many collectives

* Small-msg on-node collective optimizations

* Support for multiple NICs per node

* Notable MPII/O performance enhancements and stats

* Support for huge page allocations and memory management enhancements

* Scalable Cray PMI implementation for fast launch/job startup

* Flexible, intuitive rank re-ordering feature

COPYRIGHT HPE 2021 I 4

MPI COMMUNICATION SOFTWARE STACK FOR HPE SLINGSHOT-10

HPE Cray MPI

A

Community/
Third Party

GPU Components Verbs;Rxm Provider
A

HPE/Cray
Components

GPU Runtme/Driver

\4
Layer OFED/Libibverbs Libraries
user space

kernel space

GPU RDMA Kernel Driver OFED Drivers

COPYRIGHT HPE 2021 I 5

CRAY MPI SOFTWARE ARCHITECTURE

Application

MPI Standard Interface

MPICH Layer

API/Error c'rlve

Abstract Device Interface CADI) GPFS
CH4 Layer
o Arc?h- Active Memory Traffic GPU Aware
S Specific Coll Msg y X - VP 3
= Tuning Fallback ahagemen asses GPU Transport Layer
o® (GTL)
- Netmods SHMmods

-FI

|

Libfabric Inferface Open-source HPE developed

developed
HPE NIC Provider xm Provider - components components
components

COPYRIGHT HPE 2021 | 6

POSIX

GPU vendor

HPE CRAY MPI - TUNING AND PLACEMENT

7

MPI MESSAGE PROTOCOLS

e Message consists of envelope and data
« Envelope contains tag, communicator, length, source information, plus implementation private data
Eager (short)

« Message is sent, based on the expectation that the destination can store; if no matching receive exists, the receiver must buffer
or drop

Segmentation And Reassembly (SAR)

« Longer message is broken into chunks that are each like Eager messages
Rendezvous (long)

« Only the envelope is sent (and buffered) immediately

« Message is not sent until the destination posts a receive

« Along message is any message longer than a short message

For more information see the intro mpi man page

—1 COPYRGHT HPE2021 | 8

NEW MPI ENVIRONMENT VARIABLES FOR EX

e The default netmod that Cray-MPICH uses is libfabric (OFI)
« Libfabric is an open-source project as a subgroup of the OpenFabrics Alliance

e Cray-MPICH explicitly sets default values for a subset of new OFI environment variables
 These variables generally start with “F'I _"or “MPICH OFTI ”
« Seethe intro mpi man page for additional information

e Cray MPICH is the primary source of GPU support in the Cray Programming Environment
« Both NVIDIA and AMD GPUs are supported by Cray MPICH as of the current release
« Several environment variables are used to manage GPUs in MPI operations
— These variables generally start with “‘MPICH GPU ~

COPYRIGHT HPE 2021

9

NEW LIBFABRIC OFI ENVIRONMENT VARIABLES

Environment Variable

FI_OFI RXM BUFFER STZE

FI_OFT RXM SAR LIMIT

MPICH OFI USE PROVIDER

MPICH OFI VERBOSE

FI_VERBS MIN RNR TIMER

Purpose

Specifies the transmit buffer size/inject size in bytes. Messages of size less than this will be

transmitted via an eager protocol and those above will be transmitted via a rendezvous or SAR

(Segmentation And Reassembly) protocol. Default is 16,364

Messages of size greater than this (in bytes) are fransmitted via rendezvous
profocol. Setting this to O disables SAR protocol entirely. Default is 262,144

Specifies the libfabric provider to use. By default, the "verbs:ofi_rxm" provider is
selected for Slingshot-10 systems.

If set, displays verbose output during MPI_Init to verify which libfabric provider was
selected, along with the name and address of the NIC(s) being used.
Not set by default

This sets the minimum backoff fime used when the Mellanox NICs experience
congestion. Allowable values are 0-31, with higher values corresponding to longer
backoffs. recommended value for Slingshot10 is 3 to 6 - Default is 6

COPYRIGHT HPE 2021

10

NEW LIBFABRIC OFI ENVIRONMENT VARIABLES FOR MULTI-INJECTION

Environment Variable

MPICH OFTI NIC POLICY

MPICH OFI NIC MAPPING
MPICH OFI NIC VERBOSE

MPICH OFI NUM NICs
MPICH OFT RMA STARTUP CONNECT

MPICH OFI SKIP NIC SYMMETRY TEST

—

Default
Value

Block

Unset

0

Unset

Purpose

Selects the rank-to-NIC assignment policy used by Cray MPI.
Options: BLOCK, ROUND-ROBIN, NUMA, GPU, and USER

Specifies the precise rank-to-NIC mapping to use on each node.

If set to 1, verbose information pertaining to NIC selection is printed af the
start of the job.

Specifies the number of NICs the job can use on a per-node basis. By
default, when multiple NICs per node are available, MPI attempts to use
them all.

If set to 1, Cray MPI will create connections between all ranks on each
node in the job during MPIL_Init. May be beneficial for RMA jobs requiring
an all-to-all on-node communication pattern.

If set to 1, the check for NIC symmetry (i.e. make sure all nodes in the job
have the same number of Nics available) performed during MPI_Init will be
bypassed.

COPYRIGHT HPE 2021 I 11

NEW MPI ENVIRONMENT VARIABLES FOR GPU SUPPORT

Environment Variable

MPICH GPU SUPPORT ENABLED
MPICH GPU IPC_ENABLED
MPICH GPU EAGER REGISTER HOST MEM

MPICH GPU IPC THRESHOLD
MPICH GPU NO ASYNC MEMCPY

MPICH GPU NO ASYNC MEMCPY

—

Default
Value

38192

Purpose

Enables a parallel application to perform MPI operations with
communication buffers that are on GPU-afttached memory regions.

Enables GPU IPC support for intfra-node GPU-GPU communication
operations.

Registers the CPU-attached shared memory regions with the GPU
runtime layers.

Intra-node GPU-GPU transfers with payloads of size greater than or
equal to this value will use the IPC capability. Transfers with smaller
payloads will use CPU-attached shared memory regions.

Enables optimization for intra-node MPI transfers involving CPU and
GPU buffers. If set to O, it reverts to using blocking memcpy operations
for intra-node MPI transfers involving CPU and GPU buffers.

Enables experimental optimization for collective operations (e.g.
MPI_ALLreduce) involving GPU-GPU fransfers with large payloads

COPYRIGHT HPE 2021 I 12

RANK PLACEMENT

 Ordering of ranks is controlled by the environment variable MPICH RANK REORDER METHOD

e Four possible values:

« 0: Round-robin placement — Sequential ranks are placed on the next node in the list. Placement starts over with the first node
upon reaching the end of the list.

o 1:(DEFAULT) SMP-style placement — Sequential ranks fill up each node before moving to the next.

« 2:Folded rank placement — Similar to round-robin placement except that each pass over the node list is in the opposite direction
of the previous pass.

« 3:Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER.
e When is rank placement useful?
When point-to-point communication consumes a significant fraction of program time and a load imbalance is detected
Also shown to help for collectives (alltoall) on subcommunicators

Spread out IO across nodes
Frankly, little real-world experience has been gained on Slingshot-10 systems like Spock ..yet.

—1 COPYRGHT HPE2021 | 13

RANK PLACEMENT OPTIONS
MPICH RANK REORDER METHOD =0 (Round-robin placement)

Node 2 Node 3 Node 4

MPICH RANK REORDER METHOD =1 (SMP-style placement)
Node 3 Node 4

MPICH RANK REORDER METHOD =2 (Folded rank placement)
Node 1 Node 2 Node 3 Node 4

PE 1 PE 2 PE 10 PE 11 rEs KPE 12

COPYRIGHT HPE 2021 I 14

RANK ORDER CHOICES

e Many options, depends on pattern

« Check out pat_report, grid_order, and mgrid_order for generating custom rank orders based on:
— Measured data
— Communication patterns

— Data decomposition
« Nodes marked X use a shared resource heavily
— If the shared resource is:
- Memory bandwidth: scatter the X's X X o o
- Network bandwidth to others, again scatter
- Network bandwidth among themselves, concentrate (o] (o] (o] (o]

: COPYRIGHT HPE 2021 | 15

GPU SUPPORT IN HPE CRAY MPI

— .

GPU SUPPORT STATUS IN HPE CRAY MPI

* HPE Cray MPl is opfimized and tfuned for AMD and NVIDIA GPUs on HPE Slingshot-10 systems

* Current support status on HPE Slingshot-10 systems with AMD and NVIDIA GPUs:
e Infra-node GPU-GPU Peer-to-Peer IPC
— Optimized intra-node fransfers between GPU-attached memory regions
— Efficient data movement mechanisms for transfers between CPU- and GPU-attached memory regions

o Infer-node GPU-NIC RDMA
— Enables direct transfers between NIC and GPU without requiring CPU-attached memory staging areas

« Efficient multi-NIC and multi-GPU support

— HPE Cray MPI strives to select the best NIC for each process based on process-to-CPU and process-to-GPU
mappings

« GPU Managed memory is functionally supported

COPYRIGHT HPE 2021 I 17

GPU-NIC ASYNCHRONOUS: PREVIEW

— .

GPU-NIC ASYNC OVERVIEW

* Current MPI solutions require CPU cycles to orchestrate confrol and data flows for GPU-enabled parallel applications
« Most GPU applications currently involve distinct phases of compute and communication
—Achieving efficient communication/computation overlap is challenging
« Efficiently utilizing compute and networking resources requires non-trivial amount of application redesign
—Such solutions may not be portable across different system architectures

* GPU-NIC Async proposals
» Decouple CPU / GPU control and data paths
» Reduce frequency and overheads of CPU / GPU synchronization points
» Potentially improve utilization of all three critical resources on the compute nodes: CPU, GPU, and NIC
* New MPI APIs and API extensions are being developed
o Requires application-level changes

COPYRIGHT HPE 2021 I 19

GPU-NIC ASYNC: STREAM TRIGGERED (ST)

— .

GPU-NIC ASYNC STREAM TRIGGERED (ST): COMMUNITY INTEREST (")

for (timestep = 0; ...) {
1 compute_interior_kernel <<<...,interior_stream>>> (...)
2 pack_kernel <<<...,boundary_stream>>> (...)
3 cudaStreamSynchronize(boundary _stream)
MPI Irecv(...)
4 MPI _Isend(...)
MPI_Waitall(...)
unpack _kernel <<<..., boundary_stream>>> (...)
compute_xboundary kernel <<<..., boundary_stream>>> (...)
compute _yboundary kernel <<<..., boundary stream>>> (...)

cudaDeviceSynchronize(...)

s G000l O 4D

U NIC

GPU cP
Pack_kerng
streamSyng

Isend

Irecv

Wait

Unpack_kefnel

a) Existing CPU Control Flow

GPU CPU NIC

Pack_kemse

Isend

Irecv
Wait

Unpack_ke I

b) Envisioned GPU Control Flow

Minimizes CPU — GPU synchronization overheads, communication still occurs at kernel boundary

(* A Venkatesh, C. Chu, K. Hamidouche , S. Potluri, Davide Rossetti, and DK Panda, “MPI-GDS: High Performance MPI Designs with GPUDirect-aSync for CPU-GPU Control Flow Decoupling”,

ICPP 2017 : International Conference on Parallel Processing, Aug 2017)

—

COPYRIGHT HPE 2021

21

https://nowlab.cse.ohio-state.edu/member/akshay/
https://nowlab.cse.ohio-state.edu/member/chuc/
https://nowlab.cse.ohio-state.edu/member/hamidouc/
https://nowlab.cse.ohio-state.edu/member/potluri/
https://nowlab.cse.ohio-state.edu/member/panda/
https://mvapich.cse.ohio-state.edu/conference/650/

HPE’S GPU-NIC ASYNC (ST) PROPOSAL (1/2)

* MPIX_Isend_stream(const void *send_buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *send_request, void *stream);

« MPIlimplementation creates a send-request object, operation has not been initiated

* MPIX_Enqueue_stream(MPIX_STREAM_TRIGGER_ISEND_OPS, void *stream);
« MPI implementation creates Libfabric Deferred Work Queue elements for MPIX_Isend_stream operations
« MPI, OFI, and GPU runtime layers will launch the execution of the Deferred Work Queue elements at a later point in
fime
—Deferred Work Queue elements are processed in GPU stream order

* MPIX_Enqueue_stream(MPIX_STREAM_WAIT_ISEND_OPS, void *stream);
« MPI, OFI, and GPU runtime layers will frack completion of pending “MPIX_Isend_stream” operations
« Subsequent kernels appended to the GPU stream can access “send_buf” contents safely

COPYRIGHT HPE 2021 I 22

HPE’S GPU-NIC ASYNC (ST) PROPOSAL (2/2)

* MPIX_lrecv_stream(void *recv_buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Request *recv_request, void *stream);
« MPIlimplementation creates a recv-request object, operation has not been initiated

* MPIX_Enqueue_stream(MPIX_STREAM_TRIGGER_IRECV_OPS, void *stream),
« MPI implementation creates Libfabric Deferred Work Queue elements for MPI_Irecv_stream operations
« MPI, OFI, and GPU runtime layers will launch the execution of the Deferred Work Queue elements at a later point in
fime
—Deferred Work Queue elements are processed in GPU stream order

* MPIX_Enqueue_stream(MPIX_STREAM_WAIT_IRECV_OPS, void *stream);
« MPI, OFI, and GPU runtime layers will frack completion of pending “MPIX_Irecv_stream” operations
« Subsequent kernels appended to the GPU stream can access “recv_buf” contents safely

COPYRIGHT HPE 2021 I 23

GPU-NIC ASYNC: KERNEL TRIGGERED (KT)

— -

GPU-NIC ASYNC KERNEL TRIGGERED (KT): OVERVIEW

* Potential issues with the GPU-NIC Async ST approach:

Communication operations still occur at kernel boundaries
Kernel launch and teardown overheads are not fully eliminated

* Design and implementation criteria for the GPU-NIC Async KT approach:

CPU cycles are required to define communication requests ahead of time
—For KT: Communication paftern needs to be known ahead of time
Communication operations are started from within GPU kernels

Long running kernels minimize kernel launch and teardown overheads
Potentially improves communication/computation overlap
Communication runtime implementations are more complex:

—GPU threads must perform select MPI operations

—CPU, GPU, and NIC resources need to be efficiently managed

COPYRIGHT HPE 2021

25

PERSISTENT API PROPOSAL FOR GPU-NIC ASYNCKT

* Using existing persistent MPI APIs

int MPI_Send_init (const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv_int (void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Request *request)

* Extending persistent start and wait operations to support GPU-NIC Async KT:
o Supports only MPI_STATUS_IGNORE in the initial version

int MPI_Start(MPI_Request * request)
int MPI_StartallC int count, MPI_Request array_of_requests[])

int MPI_Wait(MPI_Request * request, MPI_Status * status)

int MPI_WaitallCint count, MPI_Request array_of_requests[], MPI_Status array_of_statuses[])

int MPI_Test(MPI_Request *request, int *flag, MPI_Status * status)
int MPI_TestallCint count, MPI_Request array_of_requestsl[], int *flag, MPI_Status array_of_statuses[])

COPYRIGHT HPE 2021 I 26

SUGGESTIONS FOR SPOCK

— .

IMPROVEMENTS IN HPE CRAY PE 21.05 VERSUS 21.04 RELEASES

Upgrade early and often!

Fixes to module cray-mpich

« No longer need to set PE MPICH GTL DIR amd gfx908
« No longer need to set PE MPICH GTL LIBS amd gfx908

Fix to optimized MPI collectives
« No longer need to set MPIR CVAR GPU EAGER DEVICE MEM=0

Improvements to compute node stability

COPYRIGHT HPE 2021 I 28

RESOURCES

* Very nice Spock Quick-Start Guide: https://docs.olcf.ornl.gov/systems/spock quick start guide.html#

* S man infro_mpi

https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html

THANK YOU

QUESTIONS?

ISO

