
HPE CRAY MPI – SPOCK WORKSHOP

Noah Reddell (on behalf of Krishna Kandalla and MPT Team)
May 20, 2021

• HPE Cray MPI overview

• HPE Cray MPI tuning & placement

• GPU support in HPE Cray MPI

• Overview

• GPU-NIC Async features

2

AGENDA

COPYRIGHT HPE 2021

HPE CRAY MPI – IMPLEMENTATION OVERVIEW

3

• Robust support for multiple GPU architectures (AMD and NVIDIA)

• Performance and scaling optimizations for many collectives

• Small-msg on-node collective optimizations

• Support for multiple NICs per node

• Notable MPI I/O performance enhancements and stats

• Support for huge page allocations and memory management enhancements

• Scalable Cray PMI implementation for fast launch/job startup

• Flexible, intuitive rank re-ordering feature

4

KEY FEATURES AND OPTIMIZATIONS – HPE CRAY MPI

COPYRIGHT HPE 2021

MPI COMMUNICATION SOFTWARE STACK FOR HPE SLINGSHOT-10

HPE Cray MPI

Libfabric

OFED DriversGPU RDMA Kernel Driver

GPU Runtme/Driver
Layer

user space
kernel space

Verbs;Rxm Provider

OFED/Libibverbs Libraries

GPU Components

HPE/Cray
Components

Community/
Third Party

5COPYRIGHT HPE 2021

6

CRAY MPI SOFTWARE ARCHITECTURE

MPI Standard Interface

POSIX

Verbs/rxm ProviderHPE NIC Provider

XPMEM

Libfabric Interface

Abstract Device Interface (ADI)

P
M

I

CH4 Layer

Jo
b

La
un

ch
er Arch-

Specific Coll
Tuning

Active
Msg

Fallback

Application

MPICH Layer
ROMIO

ADIO

Lus. GPFS ...

Collective
Algorithms

Datatypes Comm/Group
API/Error
Checking

OFI …

Netmods SHMmods

Memory
Management

GPU Aware
MPI

RMA

Traffic
Classes GPU Transport Layer

(GTL)

ROCr/HSA

CUDA OneAPI

Open-source
components

HPE developed
components

HPE optimized
components

GPU vendor
developed

components

CMA

COPYRIGHT HPE 2021

HPE CRAY MPI – TUNING AND PLACEMENT

7

• Message consists of envelope and data
• Envelope contains tag, communicator, length, source information, plus implementation private data

• Eager (short)
• Message is sent, based on the expectation that the destination can store; if no matching receive exists, the receiver must buffer

or drop
• Segmentation And Reassembly (SAR)

• Longer message is broken into chunks that are each like Eager messages
• Rendezvous (long)

• Only the envelope is sent (and buffered) immediately
• Message is not sent until the destination posts a receive
• A long message is any message longer than a short message

• For more information see the intro_mpi man page

8

MPI MESSAGE PROTOCOLS

COPYRIGHT HPE 2021

• The default netmod that Cray-MPICH uses is libfabric (OFI)
• Libfabric is an open-source project as a subgroup of the OpenFabrics Alliance

• Cray-MPICH explicitly sets default values for a subset of new OFI environment variables
• These variables generally start with “FI_” or “MPICH_OFI_”
• See the intro_mpi man page for additional information

• Cray MPICH is the primary source of GPU support in the Cray Programming Environment
• Both NVIDIA and AMD GPUs are supported by Cray MPICH as of the current release
• Several environment variables are used to manage GPUs in MPI operations

– These variables generally start with “MPICH_GPU_”

9

NEW MPI ENVIRONMENT VARIABLES FOR EX

COPYRIGHT HPE 2021

10

NEW LIBFABRIC OFI ENVIRONMENT VARIABLES

Environment Variable Purpose

FI_OFI_RXM_BUFFER_SIZE Specifies the transmit buffer size/inject size in bytes. Messages of size less than this will be
transmitted via an eager protocol and those above will be transmitted via a rendezvous or SAR
(Segmentation And Reassembly) protocol. Default is 16,364

FI_OFI_RXM_SAR_LIMIT Messages of size greater than this (in bytes) are transmitted via rendezvous
protocol. Setting this to 0 disables SAR protocol entirely. Default is 262,144

MPICH_OFI_USE_PROVIDER Specifies the libfabric provider to use. By default, the "verbs;ofi_rxm" provider is
selected for Slingshot-10 systems.

MPICH_OFI_VERBOSE If set, displays verbose output during MPI_Init to verify which libfabric provider was
selected, along with the name and address of the NIC(s) being used.
Not set by default

FI_VERBS_MIN_RNR_TIMER This sets the minimum backoff time used when the Mellanox NICs experience
congestion. Allowable values are 0-31, with higher values corresponding to longer
backoffs. recommended value for Slingshot10 is 3 to 6 - Default is 6

COPYRIGHT HPE 2021

11

NEW LIBFABRIC OFI ENVIRONMENT VARIABLES FOR MULTI-INJECTION

Environment Variable Default
Value

Purpose

MPICH_OFI_NIC_POLICY Block Selects the rank-to-NIC assignment policy used by Cray MPI.
Options: BLOCK, ROUND-ROBIN, NUMA, GPU, and USER

MPICH_OFI_NIC_MAPPING Unset Specifies the precise rank-to-NIC mapping to use on each node.

MPICH_OFI_NIC_VERBOSE 0 If set to 1, verbose information pertaining to NIC selection is printed at the
start of the job.

MPICH_OFI_NUM_NICs Unset Specifies the number of NICs the job can use on a per-node basis. By
default, when multiple NICs per node are available, MPI attempts to use
them all.

MPICH_OFI_RMA_STARTUP_CONNECT 0 If set to 1, Cray MPI will create connections between all ranks on each
node in the job during MPI_Init. May be beneficial for RMA jobs requiring
an all-to-all on-node communication pattern.

MPICH_OFI_SKIP_NIC_SYMMETRY_TEST 0 If set to 1, the check for NIC symmetry (i.e. make sure all nodes in the job
have the same number of Nics available) performed during MPI_Init will be
bypassed.

COPYRIGHT HPE 2021

12

NEW MPI ENVIRONMENT VARIABLES FOR GPU SUPPORT

Environment Variable Default
Value

Purpose

MPICH_GPU_SUPPORT_ENABLED 0 Enables a parallel application to perform MPI operations with
communication buffers that are on GPU-attached memory regions.

MPICH_GPU_IPC_ENABLED 1 Enables GPU IPC support for intra-node GPU-GPU communication
operations.

MPICH_GPU_EAGER_REGISTER_HOST_MEM 1 Registers the CPU-attached shared memory regions with the GPU
runtime layers.

MPICH_GPU_IPC_THRESHOLD 8192 Intra-node GPU-GPU transfers with payloads of size greater than or
equal to this value will use the IPC capability. Transfers with smaller
payloads will use CPU-attached shared memory regions.

MPICH_GPU_NO_ASYNC_MEMCPY 1 Enables optimization for intra-node MPI transfers involving CPU and
GPU buffers. If set to 0, it reverts to using blocking memcpy operations
for intra-node MPI transfers involving CPU and GPU buffers.

MPICH_GPU_NO_ASYNC_MEMCPY 0 Enables experimental optimization for collective operations (e.g.
MPI_ALLreduce) involving GPU-GPU transfers with large payloads

COPYRIGHT HPE 2021

• Ordering of ranks is controlled by the environment variable MPICH_RANK_REORDER_METHOD
• Four possible values:

• 0: Round-robin placement – Sequential ranks are placed on the next node in the list. Placement starts over with the first node
upon reaching the end of the list.

• 1: (DEFAULT) SMP-style placement – Sequential ranks fill up each node before moving to the next.
• 2: Folded rank placement – Similar to round-robin placement except that each pass over the node list is in the opposite direction

of the previous pass.
• 3: Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER.

• When is rank placement useful?
• When point-to-point communication consumes a significant fraction of program time and a load imbalance is detected
• Also shown to help for collectives (alltoall) on subcommunicators
• Spread out IO across nodes
• Frankly, little real-world experience has been gained on Slingshot-10 systems like Spock …yet.

13

RANK PLACEMENT

COPYRIGHT HPE 2021

14

RANK PLACEMENT OPTIONS

Node 1 Node 2 Node 4Node 3

PE 1 PE 8 PE 9 PE 4 PE 5 PE 12PE 3 PE 6 PE 11PE 2 PE 7 PE 10

Node 1 Node 2 Node 4Node 3

PE 1 PE 5 PE 9 PE 4 PE 8 PE 12PE 3 PE 7 PE 11PE 2 PE 6 PE 10

MPICH_RANK_REORDER_METHOD =0 (Round-robin placement)

Node 1 Node 2 Node 4Node 3

PE 1 PE 2 PE 3 PE 10 PE 11 PE 12PE 7 PE 8 PE 9PE 4 PE 5 PE 6

MPICH_RANK_REORDER_METHOD =1 (SMP-style placement)

MPICH_RANK_REORDER_METHOD =2 (Folded rank placement)

COPYRIGHT HPE 2021

• Many options, depends on pattern
• Check out pat_report, grid_order, and mgrid_order for generating custom rank orders based on:

– Measured data
– Communication patterns

– Data decomposition

• Nodes marked X use a shared resource heavily
– If the shared resource is:

– Memory bandwidth: scatter the X's

– Network bandwidth to others, again scatter

– Network bandwidth among themselves, concentrate

15

RANK ORDER CHOICES

X X o o

X X o o

o o o o

o o o o

COPYRIGHT HPE 2021

GPU SUPPORT IN HPE CRAY MPI

16

• HPE Cray MPI is optimized and tuned for AMD and NVIDIA GPUs on HPE Slingshot-10 systems

• Current support status on HPE Slingshot-10 systems with AMD and NVIDIA GPUs:
• Intra-node GPU-GPU Peer-to-Peer IPC

– Optimized intra-node transfers between GPU-attached memory regions
– Efficient data movement mechanisms for transfers between CPU- and GPU-attached memory regions

• Inter-node GPU-NIC RDMA
– Enables direct transfers between NIC and GPU without requiring CPU-attached memory staging areas

• Efficient multi-NIC and multi-GPU support
– HPE Cray MPI strives to select the best NIC for each process based on process-to-CPU and process-to-GPU

mappings

• GPU Managed memory is functionally supported

17

GPU SUPPORT STATUS IN HPE CRAY MPI

COPYRIGHT HPE 2021

GPU-NIC ASYNCHRONOUS: PREVIEW

18

• Current MPI solutions require CPU cycles to orchestrate control and data flows for GPU-enabled parallel applications
• Most GPU applications currently involve distinct phases of compute and communication

–Achieving efficient communication/computation overlap is challenging
• Efficiently utilizing compute and networking resources requires non-trivial amount of application redesign

–Such solutions may not be portable across different system architectures

• GPU-NIC Async proposals
• Decouple CPU / GPU control and data paths
• Reduce frequency and overheads of CPU / GPU synchronization points
• Potentially improve utilization of all three critical resources on the compute nodes: CPU, GPU, and NIC
• New MPI APIs and API extensions are being developed
o Requires application-level changes

19

GPU-NIC ASYNC OVERVIEW

COPYRIGHT HPE 2021

GPU-NIC ASYNC: STREAM TRIGGERED (ST)

20

GPU-NIC ASYNC STREAM TRIGGERED (ST): COMMUNITY INTEREST (*)

21COPYRIGHT HPE 2021

Minimizes CPU – GPU synchronization overheads, communication still occurs at kernel boundary

(* A. Venkatesh , C. Chu , K. Hamidouche , S. Potluri , Davide Rossetti , and DK Panda, “MPI-GDS: High Performance MPI Designs with GPUDirect-aSync for CPU-GPU Control Flow Decoupling”,
ICPP 2017 : International Conference on Parallel Processing, Aug 2017)

NIC NIC

https://nowlab.cse.ohio-state.edu/member/akshay/
https://nowlab.cse.ohio-state.edu/member/chuc/
https://nowlab.cse.ohio-state.edu/member/hamidouc/
https://nowlab.cse.ohio-state.edu/member/potluri/
https://nowlab.cse.ohio-state.edu/member/panda/
https://mvapich.cse.ohio-state.edu/conference/650/

• MPIX_Isend_stream(const void *send_buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *send_request, void *stream);

• MPI implementation creates a send-request object, operation has not been initiated

• MPIX_Enqueue_stream(MPIX_STREAM_TRIGGER_ISEND_OPS, void *stream);

• MPI implementation creates Libfabric Deferred Work Queue elements for MPIX_Isend_stream operations
• MPI, OFI, and GPU runtime layers will launch the execution of the Deferred Work Queue elements at a later point in

time
–Deferred Work Queue elements are processed in GPU stream order

• MPIX_Enqueue_stream(MPIX_STREAM_WAIT_ISEND_OPS, void *stream);
• MPI, OFI, and GPU runtime layers will track completion of pending “MPIX_Isend_stream” operations
• Subsequent kernels appended to the GPU stream can access “send_buf” contents safely

22

HPE’S GPU-NIC ASYNC (ST) PROPOSAL (1/2)

COPYRIGHT HPE 2021

• MPIX_Irecv_stream(void *recv_buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Request *recv_request, void *stream);

• MPI implementation creates a recv-request object, operation has not been initiated

• MPIX_Enqueue_stream(MPIX_STREAM_TRIGGER_IRECV_OPS, void *stream);

• MPI implementation creates Libfabric Deferred Work Queue elements for MPI_Irecv_stream operations
• MPI, OFI, and GPU runtime layers will launch the execution of the Deferred Work Queue elements at a later point in

time
–Deferred Work Queue elements are processed in GPU stream order

• MPIX_Enqueue_stream(MPIX_STREAM_WAIT_IRECV_OPS, void *stream);
• MPI, OFI, and GPU runtime layers will track completion of pending “MPIX_Irecv_stream” operations
• Subsequent kernels appended to the GPU stream can access “recv_buf” contents safely

23

HPE’S GPU-NIC ASYNC (ST) PROPOSAL (2/2)

COPYRIGHT HPE 2021

GPU-NIC ASYNC: KERNEL TRIGGERED (KT)

24

• Potential issues with the GPU-NIC Async ST approach:
• Communication operations still occur at kernel boundaries
• Kernel launch and teardown overheads are not fully eliminated

• Design and implementation criteria for the GPU-NIC Async KT approach:
• CPU cycles are required to define communication requests ahead of time

–For KT: Communication pattern needs to be known ahead of time
• Communication operations are started from within GPU kernels
• Long running kernels minimize kernel launch and teardown overheads
• Potentially improves communication/computation overlap
• Communication runtime implementations are more complex:

–GPU threads must perform select MPI operations
–CPU, GPU, and NIC resources need to be efficiently managed

25

GPU-NIC ASYNC KERNEL TRIGGERED (KT): OVERVIEW

COPYRIGHT HPE 2021

• Using existing persistent MPI APIs

• Extending persistent start and wait operations to support GPU-NIC Async KT:
• Supports only MPI_STATUS_IGNORE in the initial version

26

PERSISTENT API PROPOSAL FOR GPU-NIC ASYNC KT

COPYRIGHT HPE 2021

int MPI_Send_init (const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Recv_int (void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Request *request)

__device__ int MPI_Start(MPI_Request * request)
__device__ int MPI_Startall(int count, MPI_Request array_of_requests[])

__device__ int MPI_Wait(MPI_Request * request, MPI_Status * status)
__device__ int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status array_of_statuses[])

__device__ int MPI_Test(MPI_Request *request, int *flag, MPI_Status * status)
__device__ int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag, MPI_Status array_of_statuses[])

SUGGESTIONS FOR SPOCK

27

• Upgrade early and often!

• Fixes to module cray-mpich
• No longer need to set PE_MPICH_GTL_DIR_amd_gfx908
• No longer need to set PE_MPICH_GTL_LIBS_amd_gfx908

• Fix to optimized MPI collectives
• No longer need to set MPIR_CVAR_GPU_EAGER_DEVICE_MEM=0

• Improvements to compute node stability

28

IMPROVEMENTS IN HPE CRAY PE 21.05 VERSUS 21.04 RELEASES

COPYRIGHT HPE 2021

• Very nice Spock Quick-Start Guide: https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html#

• $ man intro_mpi

29

RESOURCES

https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html

30

THANK YOU

QUESTIONS?

