TOPICS

• Spock System Overview
• Node Design
• Slingshot Interconnect
• User Access Nodes
• Storage
• Application Software Stack
HPE Cray Supercomputer architecture

- Early-access testbed for Frontier
- 3 Racks holding 36 compute nodes
- 1 Rack holding support and management nodes
- HPE Slingshot interconnect - “SS10”
- AMD EPYC CPUs - “Rome”
- AMD Instinct GPUs - “MI100”
- HPE Cray Software stack
 - Essentially the same software stack that will run on Frontier, just earlier versions
- OLCF Provided Storage
SPOCK COMPUTE NODE DESIGN

- 1x AMD EPYC 7662 “Rome” 64 core processor
 - 2 hardware threads per physical core, base clock 2.0 GHz
 - 256 GB DDR4 memory with 205 GB/s peak bandwidth
 - 2x NVMe 3TB SSDs

- 4x AMD “MI100” Instinct GPUs
 - 32 GB High-Bandwidth Memory (HBM)
 - 1.2 TB/s peak bandwidth
 - 11.5 TFLOPS double-precision peak for modeling & simulation
 - 184.6 TFLOPS in half-precision peak for machine learning and data analytics.

- PCIe Gen4 connections between CPU and GPUS
 - Peak host-to-device (H2D) and device-to-host (D2H) data transfers of 32+32 GB/s

- AMD Infinity Fabric between GPUS
 - Peak device-to-device bandwidth of 46+46 GB/s, low latency

- 1x HPE Slingshot-10 interconnect port
 - Provides 12.5+12.5 GB/s to other nodes
SPOCK SLINGSHOT INTERCONNECT

- High speed, low latency network architecture
- Uses proven Dragonfly topology
- Single port Node Injection – 1 link from node to switch
 - Bi-directional bandwidth of 12.5 GB/s
- “Class 1” topology with 3 HPE Rosetta switches
 - High radix, 64-port, 12.8 Tb/s bandwidth switch
- 3 Groups, each with 12 compute nodes in the group
- All to All connections between groups
 - 2x links to each other group
 - Bi-directional bandwidth of 25 GB/s per link
- Advanced flow control features designed to explicitly address congestion and bottlenecks
 - Adaptive Routing, Quality of Service, Congestion Control
 - Ensure consistent, predictable, reliable performance

D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth and T. Hoefler, An In-Depth Analysis of the Slingshot Interconnect, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1-14,
Spock has 2 User Access Nodes

These are for user compiles, job launches, etc.

Each user access node contains:

- 2x AMD EPYC “Rome” 64 core processor
- 512 GB DDR4 memory (256 per CPU)
- 1x NVMe 2TB SSD
- 1x AMD “MI100” Instinct GPU
- 1x HPE Slingshot-10 interconnect port
- 2x 10 GbE Ethernet NICs for user access
- 2x 480 GB SSDs

The processors are the same as on the compute node, but the internal node architecture is different
STORAGE FOR SPOCK

- Spock is connected to the “Alpine” IBM Spectrum Scale™ parallel filesystem
 - Provides 250 PB of storage capacity (/gpfs/alpine/…)
 - Peak write speed of the filesystem is ~2.5 TB/s
 - Usable bandwidth to Spock will be ~20 GB/s
- Spock also has access to the center-wide NFS-based filesystem
 - Provides user (/ccs/home/…) and project (/ccs/project/…) areas
APPLICATION SOFTWARE STACK FOR SPOCK

- ORNL, LLNL, HPE, and AMD are working together to deliver a full software stack targeted at Frontier
 - Will provide compiler and library choice, performance, and programmability
 - Includes:
 - Multiple programming environments
 - Performance and correctness tools
 - Optimizations such as:
 - MPI GPU-to-GPU data movement
 - libsci_acc
 - DL Plugin
 - Compiler interoperability
 - This software is a work in progress

- Spock will get updated versions of the software as they become available
THANK YOU

glenski@hpe.com