

SPOCK SYSTEM ARCHITECTURE

Joe Glenski May 20, 2021

TOPICS

- Spock System Overview
- Node Design
- Slingshot Interconnect
- User Access Nodes
- Storage
- Application Software Stack

SPOCK SYSTEM OVERVIEW

HPE Cray Supercomputer architecture

- Early-access testbed for Frontier
- 3 Racks holding 36 compute nodes
- 1 Rack holding support and management nodes
- HPE Slingshot interconnect "SS10"
- AMD EPYC CPUs "Rome"
- AMD Instinct GPUs "MI100"
- HPE Cray Software stack
 - Essentially the same software stack that will run on Frontier, just earlier versions
- OLCF Provided Storage

Rack 2	Rack 3	Rack 4	Rack 5
50U-600mm	48u-800mm	48u-800mm	48u-800mm
Edge Router	Rosetta	Rosetta	Rosetta
Blank	Mgmt-TOR	Blank	Blank
Blank	Mgmt-TOR	Blank	Blank
Blank	Mgmt-TOR	Blank	Blank
Blank	Blank	Blank	Blank
Blank	Blank	Blank	Blank
Blank	6500	6500	6500
Blank			
Blank	Blank	Blank	Blank
Blank	6500	6500	6500
Blank			
Blank	Blank	Blank	Blank
Blank	6500	6500	6500
Blank			
Blank			
Blank	6500	6500	6500
Blank			
Blank			
KVM	Blank	Blank	Blank
Blank	6500	6500	6500
Admin			
Fabric-Mgr			
NCN-GW			
NCN-GW			
NCN-UAN			
NCN-OAN	Blank	Blank	Blank
NCN-UAN			
Blank	6500	6500	6500
Blank			
Blank			
Blank			
Blank	Blank	Blank	Blank
Blank			
Blank			
Blank	6500	6500	6500
Blank	0500	0500	
Blank			
Blank			
Blank	Blank	Blank	Blank
3-3P 208V 60A	3-3P 208V 60A	3-3P 208V 60A	3-3P 208V 60A
M14 RDX	M14 RDX	M14 RDX	M14 RDX

SPOCK COMPUTE NODE DESIGN

- 1x AMD EPYC 7662 "Rome" 64 core processor
 - 2 hardware threads per physical core, base clock 2.0 GHz
- 256 GB DDR4 memory with 205 GB/s peak bandwidth
- 2x NVMe 3TB SSDs
- 4x AMD "MI100" Instinct GPUs
 - 32 GB High-Bandwidth Memory (HBM)
 - 1.2 TB/s peak bandwidth
 - + 11.5 TFLOPS double-precision peak for modeling & simulation
 - 184.6 TFLOPS in half-precision peak for machine learning and data analytics.
- PCIe Gen4 connections between CPU and GPUS
 - Peak host-to-device (H2D) and device-to-host (D2H) data transfers of 32+32 GB/s
- AMD Infinity Fabric between GPUS
 - Peak device-to-device bandwidth of 46+46 GB/s, low latency
- 1x HPE Slingshot-10 interconnect port
 - Provides 12.5+12.5 GB/s to other nodes

PCle Gen4 (32+32 GB/s)

Infinity Fabric (46+46 GB/s) Slingshot-10 (12.5+12.5 GB/s)

PCle Gen3 x4 (8+8 GB/s)

SPOCK SLINGSHOT INTERCONNECT

- High speed, low latency network architecture
- Uses proven Dragonfly topology
- Single port Node Injection 1 link from node to switch
 - Bi-directional bandwidth of 12.5 GB/s
- "Class 1" topology with 3 HPE Rosetta switches
 - High radix, 64-port, 12.8 Tb/s bandwidth switch
- 3 Groups, each with 12 compute nodes in the group
- All to All connections between groups
 - 2x links to each other group
 - Bi-directional bandwidth of 25 GB/s per link
- Advanced flow control features designed to explicitly address congestion and bottlenecks
 - Adaptive Routing, Quality of Service, Congestion Control
 - Ensure consistent, predictable, reliable performance

J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highlyscalable dragonfly topology. ACM SIGARCH, 2008.

Kim, J., Dally, W., Scott, S., Abts, D.: Cost-Efficient Dragonfly Topology for Large-Scale Systems. IEEE Micro. 29(1), 33–40 (2009)

D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth and T. Hoefler, An In-Depth Analysis of the Slingshot Interconnect, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1-14,

SPOCK USER ACCESS NODES

- Spock has 2 User Access Nodes
- These are for user compiles, job launches, etc.
- Each user access node contains:
 - 2x AMD EPYC "Rome" 64 core processor
 - 512 GB DDR4 memory (256 per CPU)
 - 1x NVMe 2TB SSD
 - 1x AMD "MI100" Instinct GPU
 - 1x HPE Slingshot-10 interconnect port
 - 2x 10 GbE Ethernet NICs for user access
 - 2x 480 GB SSDs
- The processors are the same as on the compute node, but the internal node architecture is different

STORAGE FOR SPOCK

- Spock is connected to the "Alpine" IBM Spectrum Scale™ parallel filesystem
 - Provides 250 PB of storage capacity (/gpfs/alpine/...)
 - Peak write speed of the filesystem is ~2.5 TB/s
 - Usable bandwidth to Spock will be ~20 GB/s
- Spock also has access to the center-wide NFS-based filesystem
 - Provides user (/ccs/home/...) and project (/ccs/project/...) areas

APPLICATION SOFTWARE STACK FOR SPOCK

- ORNL, LLNL, HPE, and AMD are working together to deliver a full software stack targeted at Frontier
 - Will provide compiler and library choice, performance, and programmability
 - Includes:
 - Multiple programming environments
 - Performance and correctness tools
 - Optimizations such as:
 - MPI GPU-to-GPU data movement
 - libsci_acc
 - DL Plugin
 - Compiler interoperability
 - This software is a work in progress
 - Spock will get updated versions of the software as they become available

THANK YOU

glenski@hpe.com