
TOOLS AND STRATEGIES FOR DEBUGGING ON
HPE-CRAY SYSTEMS

Kostas Makrides
Performance Engineer

20-May-2021 1

COPYRIGHT AND TRADEMARK ACKNOWLEDGEMENTS

©2016-2021 Cray, a Hewlett Packard Enterprise company. All Rights Reserved.

Portions Copyright Advanced Micro Devices, Inc. (“AMD”) Confidential and Proprietary.

The following are trademarks of Cray, and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray: APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CLUSTERSTOR,CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, and
REVEAL. The following system family marks, and associated model number marks, are trademarks of Cray: CS, CX, XC,
XE, XK, XMT, and XT. ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
ThunderX, ThunderX2, and ThunderX3 are trademarks or registered trademarks of Cavium Inc. in the U.S. and other
countries. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Intel, the Intel logo, Intel Cilk, Intel True Scale Fabric, Intel VTune,
Xeon, and Intel Xeon Phi are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.
Lustre is a trademark of Xyratex. NVIDIA, Kepler, and CUDA are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and/or other countries.

Other trademarks used in this document are the property of their respective owners.

2

PROPRIETARY & CONFIDENTIAL

FORWARD LOOKING STATEMENTS

This presentation may contain forward-looking statements that involve risks,
uncertainties and assumptions. If the risks or uncertainties ever materialize or the
assumptions prove incorrect, the results of Hewlett Packard Enterprise Company and
its consolidated subsidiaries ("Hewlett Packard Enterprise") may differ materially from
those expressed or implied by such forward-looking statements and assumptions. All
statements other than statements of historical fact are statements that could be
deemed forward-looking statements, including but not limited to any statements
regarding the expected benefits and costs of the transaction contemplated by this
presentation; the expected timing of the completion of the transaction; the ability of
HPE, its subsidiaries and Cray to complete the transaction considering the various
conditions to the transaction, some of which are outside the parties’ control, including
those conditions related to regulatory approvals; projections of revenue, margins,
expenses, net earnings, net earnings per share, cash flows, or other financial items; any
statements concerning the expected development, performance, market share or
competitive performance relating to products or services; any statements regarding
current or future macroeconomic trends or events and the impact of those trends and
events on Hewlett Packard Enterprise and its financial performance; any statements of
expectation or belief; and any statements of assumptions underlying any of the
foregoing. Risks, uncertainties and assumptions include the possibility that expected
benefits of the transaction described in this presentation may not materialize as
expected; that the transaction may not be timely completed, if at all; that, prior to the
completion of the transaction, Cray’s business may not perform as expected due to
transaction-related uncertainty or other factors; that the parties are unable to
successfully implement integration strategies; the need to address the many
challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures
faced by Hewlett Packard Enterprise's businesses; risks associated with executing
Hewlett Packard Enterprise's strategy; the impact of macroeconomic and geopolitical
trends and events; the development and transition of new products and services and
the enhancement of existing products and services to meet customer needs and
respond to emerging technological trends; and other risks that are described in our
Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or
updated from time to time in Hewlett Packard Enterprise's other filings with the
Securities and Exchange Commission, including but not limited to our subsequent
Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation
and does not intend to update these forward-looking statements.

3

AGENDA

• Introductory Materials
• OpenMP in the Cray Programming Environment
• Example module setup

• Debugging applications with CRAY_ACC_DEBUG
• Example

• Compiler Listings
• Detailed walkthrough of an example

• Cray Performance Tools and Apprentice2
• Sampling
• Tracing
• GPU Tracing
• Apprentice2

• Introduction to GDB4HPC
• Questions

4

INTRODUCTORY MATERIALS

5

OpenMP in the Cray Programming Environment
INTRODUCTORY MATERIALS

• Our Fortran (ftn) and C/C++ (cc,CC) compilers are fully compliant with the openMP 4.5 Standard
• Add –homp for Fortran or –fopenmp for C/C++ to both the compile and link lines to build/link with openMP support
• There is no additional flag needed for OpenMP offload, however you will need to load the appropriate module for the target GPU

– craype-accel-amd-gfx906 : for the MI60 GPUs

– craype-accel-amd-gfx908 : for the MI100 GPUs
– craype-accel-nvidia70 : for the V100 GPUs

• We have implemented many OpenMP 5.0 features in CCE-11 (a number from the 5.1 standard)
• See man intro_openmp for a complete list of OpenMP 5.0 features that are currently supported

• There are a few ways that you can use the environment to change the behavior of the runtime
• CRAY_ACC_DEBUG: is a great way to get information about our offload directives

• CRAY_ACC_REUSE_MEM_LIMIT: Option to control how much memory the openMP runtime will hold on to
• For our C/C++ friends

• Can be a replacement for upstream clang (-fno-cray removes HPE/Cray added enhancements)

6

Example environment on Spock
INTRODUCTORY MATERIALS

• Environment setup on Spock with MI100 GPU offload support
module load craype-accel-amd-gfx908 rocm/4.1.0
Currently Loaded Modules:
1) cce/11.0.4 5) craype-network-ofi 9) cray-mpich/8.1.4 13) DefApps/default
2) craype/2.7.6 6) cray-dsmml/0.1.4 10) cray-libsci/21.04.1.1 14) PrgEnv-cray/8.0.0
3) craype-x86-rome 7) perftools-base/21.02.0 11) cray-pmi/6.0.10 15) craype-accel-amd-gfx908
4) libfabric/1.11.0.3.74 8) xpmem/2.2.40-2.1_2.7__g3cf3325.shasta 12) cray-pmi-lib/6.0.10 16) rocm/4.1.0

• Environment setup on Redwood with MI100 GPU offload support
Currently Loaded Modulefiles:
1) cce/12.0.0.9005 5) shared 9) perftools-base/21.05.0 13) craype-accel-amd-gfx908
2) craype/2.7.8.1 6) cuda11.2/toolkit/11.2.0 10) slurm/slurm/19.05.7
3) craype-x86-naples 7) cray-mvapich2/2.3.5 11) PrgEnv-cray/8.1.0
4) craype-network-infiniband 8) cray-libsci/20.03.1 12) rocm/4.1.1

7

DEBUGGING APPLICATIONS WITH
CRAY_ACC_DEBUG

8

DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

• We provide a mechanism that emits messages for all offloading operations
• Most offloading operations can trace back to the source with line numbers
• You can thus pinpoint where in the source data is flowing

• Setting CRAY_ACC_DEBUG to 1, 2, or 3 controls the level of verbosity from the OpenMP runtime
• CRAY_ACC_DEBUG=2 is designed to be rather user friendly and is recommended for users

• CRAY_ACC_DEBUG=3 is very verbose and uses idioms that may not be straightforward at first sight
– I often default to this value when utilizing this tool

• CRAY_ACC_DEBUG=1 is the least verbose of the three
– I don’t typically use this level

• All this functionality is for “free”
• You do not need to re-compile your application
• There are no special flags to add to either compile nor link steps

• In practice, this is the first option that I set when things break
• I often can avoid using the more heavyweight debuggers by using this option (and maybe some print statements)

9

CRAY_ACC_DEBUG=1 output
DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

• The output shows transfers to the
host and to the accelerator
• Source line numbers are shown

– I’ve condensed the file names here for
visual purposes. Complete paths can
show up in the output

• Does not show the variable being
transferred.

• The amount of data being transferred
to the device and the host are shown
for each transfer.

• Kernel execution is also shown in the
output.

10

CRAY_ACC_DEBUG=1 srun -N 1 -n 1 -p amdMI100 ./omp_map_derived_types
ACC: Transfer 1 items (to acc 120 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 1 items (to acc 128 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 2 items (to acc 80000 bytes, to host 0 bytes) from main.f:35
ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Execute kernel derived_type_openmp_$ck_L37_1 async(auto) from main.f:37
ACC: Wait async(auto) from main.f:37
ACC: Transfer 4 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Execute kernel derived_type_openmp_$ck_L37_1 async(auto) from main.f:37
ACC: Wait async(auto) from main.f:37
ACC: Transfer 4 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Execute kernel derived_type_openmp_$ck_L37_1 async(auto) from main.f:37
ACC: Wait async(auto) from main.f:37
ACC: Transfer 4 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37

DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

11

2 program derived_type_openmp
3 use operation_def, only : multiplication
4 use setup, only : setup_types, remove_types, op_ptr, op_ptr_b
5
6 implicit none
7 real(kind=8), dimension(:,:), pointer :: v, dv
8 integer :: a, i, iop
9 character(len=32) :: arg
10
11 ! Size of arrays to allocate
12 a = 100
13 ! Operation value to use
14 iop = 2
15
16 ! Setup derived types

17 call setup_types(a,iop)
18
19 ! Allocate arrays to operate on
20 allocate(v(a,a), dv(a,a))
21
22 ! Initialize v
23 v = 4
24
25 print *, 'v = ', v(1,1)
26 print *, 'array = ',op_ptr%array(1,1)
27 print *, 'type-bound array = ',op_ptr_b%array(1,1)
28
29 ! Call multiplication operator
30 print *, 'Calling operations....'
31
32 !===!
33 !== Direct call to multiply ================!
34 ! Perform operation on v to get dv

35 !$omp target data map(to:v) map(from:dv)
36 do i=1,10
37 call multiplication(op_ptr, v, dv, a)
38 end do
39 !$omp end target data

ACC: Transfer 1 items (to acc 120 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 1 items (to acc 128 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17

ACC: Transfer 2 items (to acc 80000 bytes, to host 0 bytes) from main.f:35

ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Execute kernel derived_type_openmp_$ck_L37_1 async(auto) from main.f:37
ACC: Wait async(auto) from main.f:37

DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

12

2 program derived_type_openmp
3 use operation_def, only : multiplication
4 use setup, only : setup_types, remove_types, op_ptr, op_ptr_b
5
6 implicit none
7 real(kind=8), dimension(:,:), pointer :: v, dv
8 integer :: a, i, iop
9 character(len=32) :: arg
10
11 ! Size of arrays to allocate
12 a = 100
13 ! Operation value to use
14 iop = 2
15
16 ! Setup derived types

17 call setup_types(a,iop)
18
19 ! Allocate arrays to operate on
20 allocate(v(a,a), dv(a,a))
21
22 ! Initialize v
23 v = 4
24
25 print *, 'v = ', v(1,1)
26 print *, 'array = ',op_ptr%array(1,1)
27 print *, 'type-bound array = ',op_ptr_b%array(1,1)
28
29 ! Call multiplication operator
30 print *, 'Calling operations....'
31
32 !===!
33 !== Direct call to multiply ================!
34 ! Perform operation on v to get dv

35 !$omp target data map(to:v) map(from:dv)
36 do i=1,10
37 call multiplication(op_ptr, v, dv, a)
38 end do
39 !$omp end target data

ACC: Transfer 1 items (to acc 120 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 1 items (to acc 128 bytes, to host 0 bytes) from main.f:17
ACC: Transfer 3 items (to acc 80000 bytes, to host 0 bytes) from main.f:17

ACC: Transfer 2 items (to acc 80000 bytes, to host 0 bytes) from main.f:35

ACC: Transfer 5 items (to acc 0 bytes, to host 0 bytes) from main.f:37
ACC: Execute kernel derived_type_openmp_$ck_L37_1 async(auto) from main.f:37
ACC: Wait async(auto) from main.f:37

12 subroutine setup_types(a,i)
13 implicit none
14 integer :: i, a
15 ! Setup multiplication operation
16 call operation_b%setup(a,a,i)
17 call operation%setup(a,a,i)
18
19 ! Set pointer
20 op_ptr_b => operation_b
21 op_ptr => operation
22
23 ! Map derived type data to GPU
24 !$omp target enter data map(to:op_ptr)
25 !$omp target enter data map(to:op_ptr%array)
26 !$omp target enter data map(to:op_ptr_b)
27 !$omp target enter data map(to:op_ptr_b%array)
28
29 end subroutine setup_types

CRAY_ACC_DEBUG=2 output
DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

13

CRAY_ACC_DEBUG=2 srun -N 1 -n 1 -p amdMI100 ./omp_map_derived_types
ACC: Version 4.0 of HIP already initialized, runtime version 3212
ACC: Get Device 0
ACC: Set Thread Context
ACC: Start transfer 1 items from main.f:17
ACC: allocate, copy to acc 'op_ptr' (120 bytes)
ACC: End transfer (to acc 120 bytes, to host 0 bytes)
ACC: Start transfer 3 items from main.f:17
ACC: allocate, copy to acc 'op_ptr%array(?:?,?:?)' (80000 bytes)
ACC: present 'op_ptr' (120 bytes)
ACC: attach pointer 'op_ptr%array' (96 bytes)
ACC: End transfer (to acc 80000 bytes, to host 0 bytes)
ACC: Start transfer 1 items from main.f:17
ACC: allocate, copy to acc 'op_ptr_b' (128 bytes)
ACC: End transfer (to acc 128 bytes, to host 0 bytes)
ACC: Start transfer 3 items from main.f:17
ACC: allocate, copy to acc 'op_ptr_b%base_type%array(?:?,?:?)'
(80000 bytes)
ACC: present 'op_ptr_b' (128 bytes)
ACC: attach pointer 'op_ptr_b%base_type%array' (96 bytes)
ACC: End transfer (to acc 80000 bytes, to host 0 bytes)

• The output shows transfers to the
accelerator and to the host
• Line numbers in the source are also

listed in this view
• A message is printed for data that is

already present on the device

• Variables on the map directives are
also listed in this output
• Arrays with unknown shape

information at compile time are shown
with question marks in the output

• It’s important to note the “pointer
attach” information for derived types
with pointer components

• This view gives us a decent view of
the memory transfers occurring in
our application.

CRAY_ACC_DEBUG=2 output
DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

14

CRAY_ACC_DEBUG=2 srun -N 1 -n 1 -p amdMI100 ./omp_map_derived_types
ACC: Version 4.0 of HIP already initialized, runtime version 3212
ACC: Get Device 0
ACC: Set Thread Context
ACC: Start transfer 1 items from main.f:17
ACC: allocate, copy to acc 'op_ptr' (120 bytes)
ACC: End transfer (to acc 120 bytes, to host 0 bytes)
ACC: Start transfer 3 items from main.f:17
ACC: allocate, copy to acc 'op_ptr%array(?:?,?:?)' (80000 bytes)
ACC: present 'op_ptr' (120 bytes)
ACC: attach pointer 'op_ptr%array' (96 bytes)
ACC: End transfer (to acc 80000 bytes, to host 0 bytes)
ACC: Start transfer 1 items from main.f:17
ACC: allocate, copy to acc 'op_ptr_b' (128 bytes)
ACC: End transfer (to acc 128 bytes, to host 0 bytes)
ACC: Start transfer 3 items from main.f:17
ACC: allocate, copy to acc 'op_ptr_b%base_type%array(?:?,?:?)'
(80000 bytes)
ACC: present 'op_ptr_b' (128 bytes)
ACC: attach pointer 'op_ptr_b%base_type%array' (96 bytes)
ACC: End transfer (to acc 80000 bytes, to host 0 bytes)

• The output shows transfers to the
accelerator and to the host
• Line numbers in the source are also

listed in this view
• A message is printed for data that is

already present on the device

• Variables on the map directives are
also listed in this output
• Arrays with unknown shape

information at compile time are shown
with question marks in the output

• It’s important to note the “pointer
attach” information for derived types
with pointer components

• This view gives us a decent view of
the memory transfers occurring in
our application.

12 subroutine setup_types(a,i)
13 implicit none
14 integer :: i, a
15 ! Setup multiplication operation
16 call operation_b%setup(a,a,i)
17 call operation%setup(a,a,i)
18
19 ! Set pointer
20 op_ptr_b => operation_b
21 op_ptr => operation
22
23 ! Map derived type data to GPU
24 !$omp target enter data map(to:op_ptr)
25 !$omp target enter data map(to:op_ptr%array)
26 !$omp target enter data map(to:op_ptr_b)
27 !$omp target enter data map(to:op_ptr_b%array)
28
29 end subroutine setup_types

CRAY_ACC_DEBUG=3 output
DEBUGGING APPLICATIONS WITH CRAY_ACC_DEBUG

15

ACC: Trans 2
ACC: Simple transfer of 'op_ptr' (120 bytes)
ACC: host ptr 410cc0
ACC: acc ptr 0
ACC: flags: ALLOCATE ACQ_PRESENT REG_PRESENT
ACC: host region 410cc0 to 410d38 found in present table
index 0 (ref count 2)
ACC: memory found in present table (154e56409000, base
154e56409000)
ACC: new acc ptr 154e56409000
ACC:
ACC: Trans 3
ACC: Post Transfer Phase
ACC: Trans 1
ACC: Trans 2
ACC: Trans 3
ACC: Simple transfer of 'op_ptr%array' (96 bytes)
ACC: host ptr 410cc0
ACC: acc ptr 0
ACC: flags: REG_PRESENT OMP_PTR_ATTACH
ACC: host region 4dedc0 to 4dedc1 found in present table
index 1 (ref count 1)
ACC: attach pointer host 0x410cc0 (pointee 0x4dedc0)
to device 154e56409000 (pointee 154e5640a000) for 'op_ptr%array'
from main.f:17
ACC: internal copy host to acc (host 154e5b000ba0 to
acc 154e56409000) size = 96
ACC:
ACC: End transfer (to acc 80000 bytes, to host 0 bytes)

ACC: Start transfer 3 items from main.f:17
ACC: flags: NEED_POST_PHASE
ACC:
ACC: Transfer Phase
ACC: Trans 1
ACC: Simple transfer of 'op_ptr%array(?:?,?:?)' (96 bytes)
ACC: host ptr 7fffffff71c0
ACC: acc ptr 0
ACC: flags: DOPE_VECTOR DV_ONLY_DATA ALLOCATE
COPY_HOST_TO_ACC ACQ_PRESENT REG_PRESENT
ACC: Transferring dope vector
ACC: dim:1 lowbound:1 extent:100 stride_mult:1
ACC: dim:2 lowbound:1 extent:100 stride_mult:100
ACC: DV size=80000 (scale:8, elem_size:8)
ACC: total mem size=80000 (dv:0 obj:80000)
ACC: memory not found in present table
ACC: allocate (80000 bytes)
ACC: get new reusable memory, added entry
ACC: new allocated ptr (154e5640a000)
ACC: add to present table index 1: host 4dedc0 to
4f2640, acc 154e5640a000
ACC: copy host to acc (4dedc0 to 154e5640a000)
ACC: internal copy host to acc (host 4dedc0 to acc
154e5640a000) size = 80000
ACC: new acc ptr 154e5640a000
ACC:

COMPILER LISTINGS

16

13. ! Operation value to use
14. iop = 2
15.
16. ! Setup derived types
17. + Ip call setup_types(a,iop)
18.
19. ! Allocate arrays to operate on
20. allocate(v(a,a), dv(a,a))
21.
22. ! Initialize v
23. VCr2------------<> v = 4
24.

…
35. + !$omp target data map(to:v) map(from:dv)
36. + F----------------< do i=1,10
37. + F MpmGCFr8 I----<> call multiplication(op_ptr, v, dv, a)

ftn-7256 ftn: WARNING DERIVED_TYPE_OPENMP, File = main.f, Line = 37
An OpenMP parallel construct in a target region is limited to a single thread.
38. F----------------> end do
39. !$omp end target data
40.

…
45. ! Perform operation on v to get dv
46. + !$omp target data map(to:v) map(from:dv)
47. + F----------------< do i=1,10
48. + F MmgGCFr8 I----<> call op_ptr_b%multiply(v, dv, a)

ftn-7256 ftn: WARNING DERIVED_TYPE_OPENMP, File = main.f, Line = 48
An OpenMP parallel construct in a target region is limited to a single thread.
49. F----------------> end do
50. !$omp end target data

• You can get compiler listings by compiling
with
Fortran: –hlist=a
C/C++: -fsave-loopmark
• This generates a .lst file with the listing

• The top of the listing file gives you a legend
for the symbols in-between the line
numbers and source.
• I : inlined
• p: partial
• r: unrolled
• V: vectorized
• G: Accelerated
• F: Flattened
• M: Multithreaded
• C: Collapsed

• Lines with a “+” indicate that there are
additional comments further down the
listing file.

COMPILER LISTINGS

17

13. ! Operation value to use
14. iop = 2
15.
16. ! Setup derived types
17. + Ip call setup_types(a,iop)
18.
19. ! Allocate arrays to operate on
20. allocate(v(a,a), dv(a,a))
21.
22. ! Initialize v
23. VCr2------------<> v = 4
24.

…
35. + !$omp target data map(to:v) map(from:dv)
36. + F----------------< do i=1,10
37. + F MpmGCFr8 I----<> call multiplication(op_ptr, v, dv, a)

ftn-7256 ftn: WARNING DERIVED_TYPE_OPENMP, File = main.f, Line = 37
An OpenMP parallel construct in a target region is limited to a single thread.
38. F----------------> end do
39. !$omp end target data
40.

…
45. ! Perform operation on v to get dv
46. + !$omp target data map(to:v) map(from:dv)
47. + F----------------< do i=1,10
48. + F MmgGCFr8 I----<> call op_ptr_b%multiply(v, dv, a)

ftn-7256 ftn: WARNING DERIVED_TYPE_OPENMP, File = main.f, Line = 48
An OpenMP parallel construct in a target region is limited to a single thread.
49. F----------------> end do
50. !$omp end target data

• You can get compiler listings by compiling
with
Fortran: –hlist=a
C/C++: -fsave-loopmark
• This generates a .lst file with the listing

• The top of the listing file gives you a legend
for the symbols in-between the line
numbers and source.
• I : inlined
• p: partial
• r: unrolled
• V: vectorized
• G: Accelerated
• F: Flattened
• M: Multithreaded
• C: Collapsed

• Lines with a “+” indicate that there are
additional comments further down the
listing file. ftn-6005 ftn: SCALAR DERIVED_TYPE_OPENMP, File = main.f, Line = 48

A loop starting at line 48 was unrolled 8 times.

ftn-6405 ftn: ACCEL DERIVED_TYPE_OPENMP, File = main.f, Line = 37
A region starting at line 37 and ending at line 37 was placed on

the accelerator.

ftn-3001 ftn: IPA DERIVED_TYPE_OPENMP, File = main.f, Line = 17, Column = 20
Routine "setup_types"(/home/users/cmakrides/presentations/fortran_tools/FGPU/openmp/target_map/derived_types/setup.f:12) was
textually inlined because argument 1 is a constant. NOT INLINED: setup_values : setup_values.

Mapping Derived Types with Pointer components
APPLICATION USE CASE

• Between the compiler listings and the output from
CRAY_ACC_DEBUG many errors can be successfully
understood

• This is a reproducer from another application of a data
offloading procedure
• We’ve identified using the compiler listings on the real application

that the analogous “map_array” subroutine call was not being
inlined and have added a directive to explicitly do so here.

• I will use compiler listings and CRAY_ACC_DEBUG=3 to clarify
the data offloading operation examining two cases
• “inlined” case: line 28 is replaced line 13
!$omp target enter data map(to:var%comp_b)

• “Non-inlined” case: the program as it is on the right

18

1 module test_map
2 type type_a
3 integer, pointer, contiguous :: comp_b(:)
4 end type type_a
5
6 contains
7
8 subroutine map_array(h_ptr)
9 implicit none

10
11 integer, pointer :: h_ptr(:)
12
13 !$omp target enter data map(to:h_ptr)
14 end subroutine map_array
15 end module test_map
16
17 program test_mapper
18 !DIR$ NOINLINE
19 use test_map
20 implicit none
21 integer, parameter :: n=30000
22 integer :: i
23
24 type(type_a), allocatable:: var
25 allocate(var)
26 allocate(var%comp_b(n))
27
28 call map_array(var%comp_b)
29
30 !$omp target teams distribute simd
31 do i=1,n
32 var%comp_b(i) = i
33 end do
34
35 end program test_mapper

Mapping Derived Types with Pointer components, inlined
APPLICATION USE CASE

19

ACC: Start transfer 3 items from origMain.F90:28
ACC: flags: NEED_POST_PHASE
ACC: Transfer Phase
ACC: Trans 1
ACC: Simple transfer of 'var%comp_b(:)' (72 bytes)
ACC: host ptr 4c0f00
ACC: acc ptr 0
ACC: flags: DOPE_VECTOR DV_ONLY_DATA ALLOCATE
COPY_HOST_TO_ACC ACQ_PRESENT REG_PRESENT
ACC: Transferring dope vector
ACC: DV size=120000 (dim:1 extent:30000
stride_mult:1 scale:4 elem_size:4)
ACC: total mem size=120000 (dv:0 obj:120000)
ACC: memory not found in present table
ACC: allocate (120000 bytes)
ACC: get new reusable memory, added entry
ACC: new allocated ptr (154e54409000)
ACC: add to present table index 0: host 4c0fc0 to
4de480, acc 154e54409000
ACC: copy host to acc (4c0fc0 to 154e54409000)
ACC: internal copy host to acc (host 4c0fc0 to
acc 154e54409000) size = 120000
ACC: new acc ptr 154e54409000

Trans 1

4c0fc0 154e54409000

4c0f00 154e54427000

comp_b

var

Host Device

Mapping Derived Types with Pointer components, inlined
APPLICATION USE CASE

20

ACC: Trans 2
ACC: Simple transfer of 'var' (72 bytes)
ACC: host ptr 4c0f00
ACC: acc ptr 0
ACC: flags: ALLOCATE ACQ_PRESENT
REG_PRESENT
ACC: memory not found in present table
ACC: allocate (72 bytes)
ACC: get new reusable memory, added entry
ACC: new allocated ptr (154e54427000)
ACC: add to present table index 1: host
4c0f00 to 4c0f48, acc 154e54427000
ACC: new acc ptr 154e54427000

4c0fc0 154e54409000

4c0f00 154e54427000

comp_b

var

Trans 2

Host Device

Mapping Derived Types with Pointer components, inlined
APPLICATION USE CASE

21

ACC: Trans 3
ACC: Post Transfer Phase
ACC: Trans 1
ACC: Trans 2
ACC: Trans 3
ACC: Simple transfer of 'var%comp_b' (72 bytes)
ACC: host ptr 4c0f00
ACC: acc ptr 0
ACC: flags: REG_PRESENT OMP_PTR_ATTACH
ACC: host region 4c0fc0 to 4c0fc1 found in
present table index 0 (ref count 1)
ACC: attach pointer host 0x4c0f00 (pointee
0x4c0fc0) to device 154e54427000 (pointee 154e54409000)
for 'var%comp_b' from origMain.F90:28
ACC: internal copy host to acc (host d38b70
to acc 154e54427000) size = 72
ACC:
ACC: End transfer (to acc 120000 bytes, to host 0 bytes)
ACC:

4c0fc0 154e54409000

4c0f00 154e54427000

comp_b

var

Trans 3

Host Device

Mapping Derived Types with Pointer components, not inlined
APPLICATION USE CASE

22

ACC: Start transfer 1 items from origMain.F90:13
ACC: flags:
ACC:
ACC: Trans 1
ACC: Simple transfer of 'h_ptr(:)' (72 bytes)
ACC: host ptr 4bf3c0
ACC: acc ptr 0
ACC: flags: DOPE_VECTOR DV_ONLY_DATA ALLOCATE
COPY_HOST_TO_ACC ACQ_PRESENT REG_PRESENT
ACC: Transferring dope vector
ACC: DV size=120000 (dim:1 extent:30000
stride_mult:1 scale:4 elem_size:4)
ACC: total mem size=120000 (dv:0 obj:120000)
ACC: memory not found in present table
ACC: allocate (120000 bytes)
ACC: get new reusable memory, added entry
ACC: new allocated ptr (154e56a09000)
ACC: add to present table index 0: host 4bf4c0 to 4dc980, acc 154e56a09000
ACC: copy host to acc (4bf4c0 to 154e56a09000)
ACC: internal copy host to acc (host 4bf4c0 to acc 154e56a09000) size = 120000
ACC: new acc ptr 154e56a09000
ACC: End transfer (to acc 120000 bytes, to host 0 bytes)
ACC: Start transfer 1 items from origMain.F90:30

Trans 1

4bf4c0 154e54409000

4bf3c0 154e54427000

comp_b
(h_ptr)

var

8 subroutine map_array(h_ptr)
9 implicit none

10
11 integer, pointer :: h_ptr(:)
12
13 !$omp target enter data map(to:h_ptr)
14 end subroutine map_array
15 end module test_map

(This transfer happens later)

Host Device

CRAY PERFORMANCE ANALYSIS TOOL AND
APPRENTICE2

23

Introduction
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

• Cray Performance Analysis Tool (CrayPat) is a performance analysis tool on Cray systems
• Perftools-lite – simplified easy to use version of CrayPat.

– Load the appropriate module and you should be good to go. I will not be covering this here

• Perftools– Fully controlled version of the tool
– Need to load the perftools module
– You need to build an instrumented version of your executable using pat_build
– run pat_report to generate reports

• Apprentice2 is a GUI for data visualization
• It takes data collected from perftools
• You can install it locally from: ${CRAY_PERFTOOLS_PREFIX}/share/desktop_installers

• See man intro_craypat
• Note: the perftools-base module needs to be loaded to see this man page

• Conceptually,
nvprof ~ perftools
nvvp ~ Apprentice2
• They’re not exact drop-in replacements for each other and there are features that don’t translate (For example MPI reports)

24

Profiling using Perftools
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

• You will need to have the following modules loaded: module load perftools-base/21.04.0 perftools
• Note that the Perftools version will get updated periodically. The upcoming 21.05 version will have substantial improvements for perftools

1. Build your application normally with the appropriate modules
If you use cc, CC, or ftn to compile and link you usually don’t need to do anything different.
For other compilers, you will need to determine the appropriate options. The pat_opts utility can help derive the correct options.

2. Instrument the applications using:
pat_build [options] ProgramName -o instProgramName
Default output program name is <ProgramName>+pat

1. Sampling: pat_build ProgramName
Default runs a sampling experiment called Automatic Program Analysis (APA)

2. Tracing: pat_build –u –g MPI ProgramName (can also substitute -u for -w)
This will do a tracing experiment tracing user functions/subroutines and MPI API calls

3. Run the instrumented program as you would normally run your program
This will create a directory that ends in either a ‘t’ for tracing or an ‘s’ for sampling

4. Generate reports from the experiment directory
pat_report [options] instProgramName+12345-18t

5. Optional: After generating a single report, you can then use Apprentice2 to visualize the data
There is better Apprentice2 support in Perftools-21.05

The pat_help utility that can assist with specifying the options you desire.
We have something similar to nvtx/roctx regions
int PAT_region_begin (int id, const char *label), int PAT_region_end (int id)

25

Profiling using CrayPat: Sampling
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

• I’ve instrumented an application for a sampling
experiment (host only section)
pat_build -O apa -o driver+patAPA driver

• To get a report
pat_report driver+patAPA+123413-18s

• Specifics of this experiment can be found towards the
end of the report
• Sampling interval: 10000 microsecs
• It also includes the command used to instrument the

program

• The sampling interval by default is 10000 μs
• This can be set by the environment variable
PAT_RT_SAMPLING_INTERVAL

• It’s best not to make this very small since that might
add biases

• Experiment with what works best!

26

Samp% | Samp | Imb. | Imb. | Group
| | Samp | Samp% | Function
| | | | Thread=HIDE

100.0% | 90.0 | -- | -- | Total
|--
| 85.6% | 77.0 | -- | -- | ETC
||---
|| 34.4% | 31.0 | -- | -- | do_futex_wait.constprop.1
|| 34.4% | 31.0 | -- | -- | do_futex_wait
|| 13.3% | 12.0 | -- | -- | __pat_memset
|| 2.2% | 2.0 | -- | -- | __pthread_timedjoin_ex
|| 1.1% | 1.0 | -- | -- | __cray_memset_ROME
||===
| 10.0% | 9.0 | -- | -- | RT
||---
|| 8.9% | 8.0 | -- | -- | sched_yield
|| 1.1% | 1.0 | -- | -- | nanosleep
||===
| 2.2% | 2.0 | -- | -- | USER
||---
|| 1.1% | 1.0 | -- | -- | compare
|| 1.1% | 1.0 | -- | -- | Array<>::index<>
||===

Profiling using CrayPat: Tracing
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

• I’ve instrumented an application for a
tracing experiment (host only section)
pat_build -f -u –g mpi,omp
driver
• The options after the -g flag specifies trace

groups you wish to examine

• The MPI and OMP trace groups specify
that MPI and openMP API functions are
traced
• A complete list can be found in the
pat_build man pages

• Specifics of each trace group can be found in
${CRAYPAT_ROOT}/share/traces

27

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function
| | | | | Thread=HIDE

100.0% | 0.829906 | -- | -- | 601.0 | Total
|--
| 87.9% | 0.729575 | -- | -- | 57.0 | USER
||---
|| 58.3% | 0.483584 | -- | -- | 1.0 | main
|| 27.4% | 0.227148 | -- | -- | 24.0 | faces::share
|| 1.6% | 0.013412 | -- | -- | 2.0 | Mugs::share.LOOP@li.140
||===
| 11.7% | 0.097026 | -- | -- | 19.0 | OMP
||---
|| 11.7% | 0.096953 | -- | -- | 5.0 | omp_get_num_devices
|==

Profiling using CrayPat: Call tree
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

28

100.0% | 0.829906 | -- | Total
|---
| 58.5% | 0.485607 | 1.0 | main:main.cpp:line.117
| 27.9% | 0.231415 | -- | main:main.cpp:line.176
| 27.4% | 0.227086 | 8.0 | faces::share:faces.cpp:line.591
| 11.7% | 0.096953 | -- | main:main.cpp:line.149
| 11.7% | 0.096953 | 5.0 | omp_get_num_devices
| 1.9% | 0.015633 | -- | main:main.cpp:line.161
| | | | Mugs::share:Mugs.cpp:line.138
3 1.9% | 0.015585 | -- | CLANG$$kernel_trampoline_cray
4 | | | Mugs::share:Mugs.cpp:line.143
5 1.9% | 0.015578 | -- | Mugs::share.REGION@li.143:Mugs.cpp:line.138
6 1.6% | 0.013412 | 2.0 | Mugs::share.LOOP@li.140:Mugs.cpp:line.140
|===

Using:
pat_report –O ct<expDirectory>

100.0% | 0.829906 | -- | Total
|---
| 100.0% | 0.829906 | 1.0 | main
||--
|| 58.3% | 0.483584 | 1.0 | main(exclusive)
|| 27.8% | 0.230748 | 24.0 | faces::share
|| 11.7% | 0.096953 | 5.0 | omp_get_num_devices
|| 1.9% | 0.015633 | -- | Mugs::share
3| 1.9% | 0.015585 | -- | CLANG$$kernel_trampoline_cray
4| | | | Mugs::share
5| 1.9% | 0.015585 | 2.0 | Mugs::share.REGION@li.143
6| 1.6% | 0.013412 | 2.0 | Mugs::share.LOOP@li.140
|==

Using:
pat_report –O ct+src <expDirectory>

Profiling using CrayPat: GPUs
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

29

• You can instrument your executable to include
HIP API calls
pat_build -u –g hip,mpi faces

• In a future perftools release we directly trace
openMP-offload directives
• This will appear as another section, similarly to how HIP, MPI, and

USER sections are shown in the report on the right.

• Our pat build command had both HIP and MPI
being traced

• The default imbalance function is

1 −
#𝑋!".$
𝑋$

• Where 𝑋! is the maximum value of the quantity X across all ranks

• "𝑋"#.! is the average of the remaining set excluding the maximum
value

• A 100% imbalanced function occurs when 𝑋! is much larger than
all other 𝑋%

100.0% | 10.884670 | -- | -- | 2,037,541.0 | Total
|---
| 85.1% | 9.257728 | -- | -- | 1,461,749.0 | HIP
||--
|| 26.9% | 2.930075 | 0.042946 | 1.9% | 340.0 | hipStreamCreate
|| 21.9% | 2.385538 | 0.005494 | 0.3% | 50,000.0 | hipStreamSynchronize
|| 8.3% | 0.903107 | 0.038917 | 5.5% | 10,000.0 | hipDeviceSynchronize
|| 5.0% | 0.542292 | 0.007931 | 1.9% | 400,200.0 | hipLaunchKernel
|| 4.7% | 0.515733 | 0.018394 | 4.6% | 90,000.0 | hipKernel.gpuRun1x1<>
|| 3.7% | 0.398302 | 0.011655 | 3.8% | 400,200.0 | __hipPushCallConfiguration
|| 3.6% | 0.392681 | 0.045757 | 13.9% | 50,000.0 | hipKernel.gpuRun2x1<>
|| 3.4% | 0.372933 | 0.013457 | 4.6% | 400,200.0 | __hipPopCallConfiguration
|| 2.8% | 0.299503 | 0.000316 | 0.1% | 143.0 | hipMemset
|| 1.7% | 0.186282 | 0.005251 | 3.7% | 30,000.0 | hipKernel.gpuRun0x1<>
|| 1.2% | 0.134061 | 0.029983 | 24.4% | 170.0 | hipStreamDestroy
|| 1.1% | 0.115870 | 0.002522 | 2.8% | 20,000.0 | hipKernel.gpuRun<>
||==
| 8.1% | 0.879836 | -- | -- | 565,648.0 | MPI
||--
|| 5.0% | 0.548648 | 0.291412 | 46.3% | 40,200.0 | MPI_Waitall
|| 2.7% | 0.293085 | 0.023391 | 9.9% | 262,600.0 | MPI_Isend
||==
| 6.8% | 0.741264 | -- | -- | 10,123.0 | USER
||--
|| 5.1% | 0.558683 | 0.038988 | 8.7% | 100.0 | Mugs::share
|| 1.4% | 0.151455 | 0.002882 | 2.5% | 10,000.0 | Faces::share
|===

Apprentice2
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

30

• We have a GUI that
visualize data taken by
perftools
• Apprentice takes

information from the
experiment directories
app2 <dirName>

• export PAT_RT_SUMMARY=0

• Here we show the call tree
for the faces mini-app

• You can download the
experiment directory and
run the application locally

• We also have options to
run apprentice2 remotely
as well
• This is a bit complicated

right now for Spock

Apprentice2
CRAY PERFORMANCE ANALYSIS TOOL AND APPRENTICE2

• This timeline view is similar
to that of nvvp

• CPU information (and call
stack) is listed above

• The main viewer has the
GPU information

• Green bars are memory
operations

• Grey bars are kernels
• The bottom has “activity”

31

GDB4HPC

32

GDB4HPC

• The familiar GDB debugger is a common tool to diagnose errors
• One limiting factor is that common HPC technologies such as MPI are typically not well supported

• HPE has developed a debugger that has been designed to assist in debugging HPC applications
• The syntax is similar to that of regular GDB

– In fact, gdb4hpc is built on top of the GDB

• This is a very large and sophisticated program with many features
• In this short introduction to gdb4hpc I will show some features that might be useful for getting started

• Load the gdb4hpc module to have gdb4hpc in your path and the man pages available
• man gdb4hpc
• You can also find help at the gdb4hpc command line by utilizing the help command

– help will give you a list of all the command and you can get more help about a particular command by augmenting the help command with the
command of interest.

– Ex. >$ help info threads will display information on the info threads command.

• Quick Note: You can still debug your application at non-zero optimization levels although you might not be getting all
of the information that you desire when debugging.
• If debugging GPU accelerated applications, it’s recommended to add -ggdb

33

Quick start with launching an application
GDB4HPC

>$ dbg all> launch $a{2} --gpu --gdb=/opt/rocm-4.1.1/bin/rocgdb --launcher-
args="--ntasks-per-node=1 --mpi=pmi2 -p amdMI100" -a "-n 10 10 10 -P 2 1 1"
./runProgram

• launch $a{2} : This launches a job with 2 MPI ranks. I’ve named this instance “a”, but you can choose any name
you would like.

• --gpu : This option is needed to signal to gdb4hpc that you want to use a GPU debugger
• --gdb=/opt/rocm-4.1.1/bin/rocgdb : This specifies the debugger that you intend to use. We currently

need to use this now, but may change in the future to key off other active modules.
• --launcher-args=”…" : These are options that are being passed to slurm to on how to run the job. The option –

ntasks-per-node=1 is a requirement for debugging on AMD GPUs.
• -a ”…” : This specifies the command line arguments that your program is expecting.
• -i <<inputFile>> : file to pass to you program as stdin (not used in the above example)

After launching a debugging session, you can start to add breakpoints and follow through the code as you would in gdb

34

Adding Breakpoints
GDB4HPC

dbg all> launch $a{2} --gpu --gdb=/opt/rocm-4.1.1/bin/rocgdb --
launcher-args="--ntasks-per-node=1 --mpi=pmi2 -p amdMI100" -a "-
n 10 10 10 -P 2 1 1" ./amg
Starting application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications
network...
Timeout in 400 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [2]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
a{0..1}: Initial breakpoint, in
dbg all> break par_csr_communication.c:430
dbg all> continue
<$a>: MPI VERSION : CRAY MPICH version 8.1.2.1 (ANL base
3.4a2)
<$a>: MPI BUILD INFO : Tue Feb 16 15:56 2021 (git hash 966808e)
(CH4)
<$a>: Running with these driver parameters:
…

35

a{0..1}: Breakpoint 2, hypre_ParCSRCommHandleCreate_v2 at
par_csr_communication.c:430
dbg all> list
a{0..1}: 430 printf("###KM in par_csr_communication.c | my_id=%d |
send_data - %p , recv_data - %p, num_requests - %d,
job=%d",my_id,send_data,recv_data,num_requests, job);
a{0..1}: 431 fflush(stdout);
a{0..1}: 432 #endif
a{0..1}: 433
a{0..1}: 434 j = 0;
a{0..1}: 435 switch (job)
a{0..1}: 436 {
a{0..1}: 437 case 1:
a{0..1}: 438 {
a{0..1}: 439 HYPRE_Complex *d_send_data = (HYPRE_Complex *)
send_data;
dbg all> info locals
a{0..1}: Name:job Type:HYPRE_Int
a{0..1}: Name:comm_pkg Type:hypre_ParCSRCommPkg *
a{0..1}: Name:send_memory_location Type:HYPRE_MemoryLocation
a{0..1}: Name:send_data_in Type:void *
a{0..1}: Name:recv_memory_location Type:HYPRE_MemoryLocation
a{0..1}: Name:recv_data_in Type:void *
a{0..1}: Name:num_sends Type:HYPRE_Int
a{0..1}: Name:comm Type:MPI_Comm
a{0..1}: Name:recv_data Type:void *
a{0..1}: Name:my_id Type:HYPRE_Int
a{0..1}: Name:j Type:HYPRE_Int

Switching Ranks
GDB4HPC

a{1}: Program received signal SIGABRT.
a{1}: In raise at :0
…
dbg all> focus $a{1}
dbg a_temp> bt
a{1}: #12 main at /home/users/cmakrides/benchmarks/amg_april20201/AMG_new/amg.c:414
a{1}: #11 HYPRE_PCGSetup at HYPRE_pcg.c:34
a{1}: #10 hypre_PCGSetup at pcg.c:228
a{1}: #9 hypre_BoomerAMGSetup at par_amg_setup.c:1220
a{1}: #8 hypre_BoomerAMGCreate2ndS at par_strength.c:2931
a{1}: #7 hypre_BoomerAMGCreate2ndSDevice
a{1}: #6 hypre_MatvecCommPkgCreate at par_csr_communication.c:938
a{1}: #5 hypre_ParCSRCommPkgCreateApart at new_commpkg.c:585
a{1}: #4 hypre_ParCSRCommPkgCreateApart_core at new_commpkg.c:278
a{1}: #3 hypre_DataExchangeList at exchange_data.c:247
a{1}: #2 hypre_MPI_Irecv at mpistubs.c:1044
a{1}: #1 abort
a{1}: #0 raise
dbg a_temp> focus $a{0}
dbg a_temp> bt
a{0}: #9 main at /home/users/cmakrides/benchmarks/amg_april20201/AMG_new/amg.c:414
a{0}: #8 HYPRE_PCGSetup at HYPRE_pcg.c:34
a{0}: #7 hypre_PCGSetup at pcg.c:228
a{0}: #6 hypre_BoomerAMGSetup at par_amg_setup.c:1220
a{0}: #5 hypre_BoomerAMGCreate2ndS at par_strength.c:2931
a{0}: #4 hypre_BoomerAMGCreate2ndSDevice
a{0}: #3 hypre_MatvecCommPkgCreate at par_csr_communication.c:938
a{0}: #2 hypre_ParCSRCommPkgCreateApart at new_commpkg.c:585
a{0}: #1 hypre_ParCSRCommPkgCreateApart_core at new_commpkg.c:278
a{0}: #0 hypre_DataExchangeList at exchange_data.c:247 36

Focus on rank 1

Focus on rank 0

The MPI ranks have diverged
(slightly) from one another in

the code base.

You can use regular-like
expressions to focus a number of
ranks. Focus $all can revert
to the global-focus view that we
start with.

Final Tips
GDB4HPC

• The source command can sequentially
enter in a number of commands given by a
file.

• This is a good way to gather a list of break
points and load them in.

• I find this is a good way to return to a point
in debugging after doing a number of
modifications

• You can shutdown a debugging instance by
• Killing the individual instance: kill $a
• Quitting gdb4hpc : quit

37

>$ cat gdb_input
launch $a{2} --gpu --gdb=/opt/rocm-4.1.1/bin/rocgdb --launcher-
args="--ntasks-per-node=1 --mpi=pmi2 -p amdMI100" -a "-n 10 10 10 -P
2 1 1" ./amg
continue
break par_csr_communication.c:430
break exchange_data.c:247
>$ gdb4hpc
dbg a_temp> source gdb_input
Starting application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications
network...
Timeout in 400 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [2]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
a{0..1}: Initial breakpoint, in
a{0}: Breakpoint 1: file par_csr_communication.c, line 430.
a{0}: Breakpoint 2: file exchange_data.c, line 247.
…
dbg a_temp> kill $a
Shutting down debugger and killing application for 'a'.

OTHER DEBUGGING OPTIONS

38

More debugging tools
OTHER DEBUGGING OPTIONS

• rocgdb
• Heavyweight debugger like gdb

• rocprof
• Very similar to something like nvprof
• Works with hip codes
• Can export json files and open them up in chrome tracing (or another third-party visualization tool)

• Good ol’ write/printf
• Currently works for C/C++ in openMP target regions
• Write/printf in target regions is not available yet in Fortran openMP offload ;_;

• AMD_LOG_LEVEL environment variable on AMD GPUs:
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html#more-tips

Not exactly a tool for debugging
• Reveal – Can help the addition of adding openMP directives

39

THANK YOU

QUESTIONS?

Kostas Makrides
makrides@hpe.com

40

