
HPE COMPILER GPU OFFLOADING

Jeff Sandoval
CCE OpenMP Tech Lead
May 20, 2021

• General compiler overview
• Offloading models

• OpenMP
• OpenACC
• HIP

• Offloading best practices

OUTLINE

2

GENERAL COMPILER OVERVIEW

3

• A major part of the broader HPE Cray Programming Environment (CPE) supported on HPE systems
• Compilers + Math & Communication Libraries + Debuggers + Performance Analysis Tools

• Fortran compiler
• Proprietary front end and optimizer; HPE-modified LLVM backend
• Fortran 2018 support (including coarray teams)

• C and C++ compiler
• HPE-modified closed-source build of Clang+LLVM complier
• C11 and C++17 support
• UPC support

• Offloading support
• NVIDIA GPUs – XC and CS systems only
• AMD GPUs – Shasta and Apollo systems only
• OpenMP 4.5 and partial 5.0
• OpenACC 2.0 – Fortran only
• HIP – AMD GPUs only

HPE CRAY COMPILING ENVIRONMENT (CCE)

4

• Two major releases a year (~Q2 and ~Q4)
• CCE codebase and version based off latest Clang major release (lag by ~2 months)

• Monthly minor updates in between
• Continue for 4 months after each major release

• Examples
• CCE 11.0 – based on Clang 11.0 – Nov 2020
• CCE 12.0 – based on Clang 12.0 – Jun 2021 (tentative)
• CCE 13.0 – based on Clang 13.0 – Nov 2021 (tentative)

• Release cadence and versioning changed in CCE 10.0
• Older versions of CCE do not correspond to Clang/LLVM version numbers

CCE COMPILER RELEASE AND VERSIONING

6

• Man pages of interest
• cc, CC, ftn – CCE compiler driver documentation
• craycc, crayCC, crayftn – CCE C, C++, and Fortran compiler documentation
• intro_openmp – CCE OpenMP documentation
• intro_openacc – CCE OpenACC documentation
• intro_directives – CCE compiler directives

CCE COMPILER DOCUMENTATION

7

CCE OFFLOADING MODELS

8

• Uses proprietary CCE OpenMP runtime libraries
• Allows cross-language and cross-vendor interoperability

• Implements HPE-optimized code generation for OpenMP offload regions
• OpenMP 5.0 – implemented over several CCE releases

• See release notes and intro_openmp man page for full list of supported features in each release
• Many remaining features in progress (unified_shared_memory, declare mapper, multiple GPUs)
• Full OpenMP 5.0 planned for CCE 13.0 (Nov 2021)

• OpenMP 5.1 – implementation planned over several CCE releases
• High-priority features planned for CCE 13.0 (e.g., interop construct, “masked” construct)
• Other clarifications and features will be implemented as schedule permits
• Full OpenMP 5.1 support is planned for CCE 14.0 (May 2022)

CCE OPENMP SUPPORT

9

CCE OPENMP 5.0 IMPLEMENTATION STATUS

CCE 10.0 (May 2020) CCE 11.0 (Nov 2020) CCE 12.0 (Jun 2021, tentative) CCE 13.0 (Nov 2021, tentative)

• OMP_TARGET_OFFLOAD
• reverse offload
• implicit declare target
• omp_get_device_num
• OMP_DISPLAY_AFFINITY
• OMP_AFFINITY_FORMAT
• set/get affinity display
• display/capture affinity
• requires
• unified_address
• unified_shared_memory
• atomic_default_mem_order
• dynamic_allocators
• reverse_offload
• combined master constructs
• acq/rel memory ordering (Fortran)
• deprecate nested-var
• taskwait depend
• simd nontemporal (Fortran)
• lvalue map/motion list items
• allow != in canonical loop
• close modifier (C/C++)
• extend defaultmap (C/C++)

• noncontig update
• map Fortran DVs
• host teams
• use_device_addr
• nested declare target
• allocator routines
• OMP_ALLOCATOR
• allocate directive
• allocate clause
• order(concurrent)
• atomic hints
• default nonmonotonic
• imperfect loop collapse
• pause resources
• atomics in simd
• simd in simd
• detachable tasks
• omp_control_tool
• OMPT
• OMPD
• declare variant (Fortran)
• loop construct
• metadirectives (Fortran)
• pointer attach
• array shaping
• acq/rel memory ordering (C/C++)
• device_type (C/C++)
• non-rectangular loop collapse (C/C++)

• device_type (Fortran)
• affinity clause
• conditional lastprivate (C/C++)
• simd if (C/C++)
• iterator in depend (C/C++)
• depobj for depend (C/C++)
• task reduction (C/C++)
• task modifier (C/C++)
• simd nontemporal (C/C++)
• uses_allocators (C/C++)
• scan (C/C++)
• lvalue list items for depend
• mutexinoutset (C/C++)
• taskloop cancellation (C/C++)

• close modifier (Fortran)
• extend defaultmap (Fortran)
• uses_allocators (Fortran)
• concurrent maps
• taskloop cancellation (Fortran)
• scan (Fortran)
• mutexinoutset (Fortran)
• metadirectives (C/C++)
• loop construct (C/C++)
• task reduction (Fortran)
• task modifier (Fortran)
• target task reduction
• mapper
• non-rectangular loop collapse (Fortran)
• declare variant (C/C++)
• iterator in depend (Fortran)
• simd if (Fortran)
• depobj for depend (Fortran)

Refer to CCE release notes or intro_openmp
man page for current implementation status

10

• CCE only supports OpenACC for Fortran
• C/C++ support was dropped in CCE 10.0
• OpenACC 2.0 support available today
• OpenACC 3.1 support planned over next 12-18 months
• CCE OpenMP and OpenACC implementations share a common codebase

• Significant overlap in both compiler and runtime library
• Same performance should be achievable with either model

CCE OPENACC SUPPORT

12

• Heterogeneous-Compute Interface for Portability (HIP) is AMD’s “CUDA-like” offloading model
• CCE 11.0 (Nov 2020) introduced support for compiling HIP source files targeting AMD GPUs

• CCE HIP support relies on AMD’s open-source HIP implementation in upstream Clang/LLVM
• CCE does not provide HIP header files or runtime libraries

• Header files and runtime libraries are needed from a standard AMD ROCm install
• CCE HIP will maintain compatibility with upstream HIP implementation whenever possible

CCE HIP SUPPORT

13

CCE OPENMP/OPENACC FLAGS

Capability CCE Fortran Flags CCE C/C++ Flags

Enable/Disable OpenMP
(disabled at default)

-f[no-]openmp
-h[no]omp

-f[no-]openmp

Enable/Disable OpenACC
(enabled at default)

-h[no]acc N/A

Enable HIP N/A -x hip --rocm-path=$ROCM_PATH –L $ROCM_PATH/lib –lamdhip64

Offloading Target
All CCE Compilers

(accel modules)
CCE C/C++ (optional flags)

Native Host CPU craype-accel-host (default without flags; no warning)

NVIDIA Volta1 craype-accel-nvidia70 -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_70

AMD MI602 craype-accel-amd-gfx906 -fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906

AMD MI1002 craype-accel-amd-gfx908 -fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

1 NVIDIA GPU support limited to XC and CS systems
2 AMD GPU support limited to Shasta and Apollo systems

14

CCE OFFLOADING BEST PRACTICES

15

THE MULTIPLE DIMENSIONS OF GPU PARALLELISM

NVIDIA AMD Description

Threadblock / CTA Work group

• Loosely-coupled, course-grained parallelism
• Collective synchronization prohibited
• Performs best with massive parallelism
• Performance scales with more powerful GPUs

Warp Wavefront
• Fine-grained, independent parallelism
• NVIDIA warp size is 32 threads
• AMD wavefront size is 64 work items

Thread Work item
• Fine-grained, lock-step parallelism
• Performs best with stride-1 data accesses
• Performs best with non-divergent control flow

16

OPENACC/OPENMP CONSTRUCT MAPPING TO GPU

NVIDIA AMD CCE Fortran
OpenACC

CCE Fortran
OpenMP

CCE C/C++
OpenMP

Clang C/C++
OpenMP

Threadblock Work group acc gang omp teams omp teams omp teams

Warp Wavefront acc worker

omp simd
omp parallel
omp simd

omp parallel

Thread Work item acc vector

• Current best practice:
• Use “teams” to express GPU threadblock/work group parallelism
• Use “parallel for simd” to express GPU thread/work item parallelism

• Future direction:
• Improve CCE support for “parallel” and ”simd” in accelerator regions
• Upstream Clang is expanding support for “simd” in accelerator regions

Long-term goal: let users express parallelism with any construct they think
makes sense, and CCE will map to available hardware parallelism

17

• Environment variable CRAY_ACC_DEBUG=[1-3]
• Emits runtime debug messages for offload activity (allocate, free, transfer, kernel launch, etc)

RUNTIME OFFLOADING MESSAGES

program main
integer :: aaa(1000)
aaa = 0
!$omp target teams distribute map(aaa)
do i=1,1000
aaa(i) = 1

end do

if (sum(abs(aaa)) .ne. 1000) then
print *, "FAIL"
call exit(-1)

end if
print *, "PASS"

end program main

ACC: Version 4.0 of HIP already initialized, runtime
version 3241
ACC: Get Device 0
ACC: Set Thread Context
ACC: Start transfer 1 items from hello_gpu.f90:4
ACC: allocate, copy to acc 'aaa(:)' (4000 bytes)
ACC: End transfer (to acc 4000 bytes, to host 0 bytes)
ACC: Execute kernel main_$ck_L4_1 blocks:8 threads:128
from hello_gpu.f90:4
ACC: Start transfer 1 items from hello_gpu.f90:7
ACC: copy to host, free 'aaa(:)' (4000 bytes)
ACC: End transfer (to acc 0 bytes, to host 4000 bytes)
PASS

19

• OpenMP offload “nowait” constructs map to independent GPU streams
• “depend” clauses are handled with necessary stream synchronization

• Task “detach” support introduced in CCE 11.0 (Nov 2020)
• Cross-device dependences are not yet optimized well (overly conservative synchronization)
• Multi-threaded use of GPU are not yet optimized well (overly conservative locking)

ASYNC OFFLOAD CAPABILITIES

20

• CCE supports OpenMP 5.0 allocator mechanisms
• “pinned” allocator trait maps to cudaMallocHost or hipMallocHost
• Vendor-specific allocator maps to cudaMallocManaged or hipMallocManaged

– “cray_omp_get_managed_memory_allocator_handle()” returns a custom allocator handle (available in CCE 12.0)

• Environment variable, CRAY_ACC_USE_UNIFIED_MEM=1
• CCE offloading runtime library will auto-detect user-allocations of pinned or managed memory
• No explicit allocations or transfers will be issued for such memory
• Original pointers passed directly into GPU kernels
• CRAY_ACC_DEBUG runtime messages reflect this capability

UNIFIED MEMORY CAPABILITIES

21

THANK YOU
Jeff Sandoval
jeffrey.sandoval@hpe.com

22

