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Why HARVEY?
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Patient-Specific Computational ModelsPATIENT-SPECIFIC COMPUTATIONAL MODELS

Feedback

Visualization,
Interaction, and 
Discovery
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Fractional Flow Reserve

FFR is the current gold standard for the assessment of coronary 
artery disease 
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Patient-Specific Computational ModelsRECONSTRUCTION

* *

Inlet Boundary Condition:
Coronary velocity waveform

Outlet boundary condition:
Coronary microresistance

Total coronary microresistance:
48000 dynes s/cm5

Total coronary microresistance:
12000 dynes s/cm5
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Peak coronary velocity

Wave period

PAIR OF ANGIOGRAMS BASED ON TWO ACQUISITIONS C-ARM
LAO 41 CRANIAL 26 (left) RAO 22 CAUDAL 22 (right)

3D LCA MODEL

RESTING STATE

Average inflow 
rate: 3.6 ml/s 

Average inflow 
rate: 14.5 ml/s 

HYPEREMIC STATE
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No slip boundary condition

Vardhan et al. Nature Scientific Reports 2021
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Patient-Specific Computational ModelsPERSONALIZED COMPUTATIONAL MODELS

* *

Inlet Boundary Condition:
Coronary velocity waveform

Outlet boundary condition:
Coronary microresistance

Total coronary microresistance:
48000 dynes s/cm5

Total coronary microresistance:
12000 dynes s/cm5
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Patient-Specific Computational ModelsRESTING AND HYPEREMIC STATES

* *

Inlet Boundary Condition:
Coronary velocity waveform

Outlet boundary condition:
Coronary microresistance

Total coronary microresistance:
48000 dynes s/cm5

Total coronary microresistance:
12000 dynes s/cm5
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Patient-Specific Computational ModelsIMPORTANCE OF SIDE BRANCHES

Capturing the full arterial tree including 
side branches is critical to accurately 
assessing flow characteristics. 

Vardhan et al. Nature Scientific Reports 2019
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Patient-Specific Computational ModelsOTHER USE CASES

Diagnostics Treatment Planning

Mechanistic Massively Parallel Computing
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So, why HPC?
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High-resolution multiphysics models are needed2010: High-res coronary model
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FULL ARTERIAL NETWORK
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Patient-Specific Computational ModelsCOMPUTER SCIENCE CHALLENGES



Development and Applications of Massively Parallel Models of Human Hemodynamics RANDLESLAB, DUKE UNIVERSITY

Patient-Specific Computational ModelsCOMPUTER SCIENCE CHALLENGES

• Making the models tractable/scalable
• Visualizing the data
• Interacting with the simulation
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OutlineHARVEY: numerics

Introduction Simulation Results

Why Lattice Boltzmann framework?

Solves the (weakly compressible) Naiver-Stokes equations

Minimal communication between lattice points during update

Macroscopic quantities computed at lattice point

⇢ =
X

i

fi ~u =
1

⇢

X

i

~ci fi P = c
2
s ⇢ (4)

Simple treatment of complex geometry: bounce-back BCs

• Solves the (weakly compressible) Navier-
Stokes equations
• Minimal communication between lattice 
points during update
• Macroscopic quantities computed at lattice 
points

• Straight forward treatment of complex 
geometry
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DOMAIN DECOMPOSITON

Figure 1. Schematic representation of a single collision-streaming cycle
on four cells of a one-dimensional lattice Boltzmann simulation with two
populations per cell (detailed explanations are found in the text). The two
populations on each cell are distinguished by the use of a solid line for the
first and a dashed line for the other. The numbers next to the populations
label the cell on which the populations were located at the initial time step
t. In a colored version of this document, the populations are indicated in red
when they reach the post-collisional state.

Figure 2. The geometry of the 12.5 microns resolution test case. The close-in
shows a detail of the geometry with red blood cells visible.

strategies for irregular lattices already exist, as described
in [22]. In particular, state-of-the-art techniques like those
represented by multilevel k�way partitioning schemes can be
used for irregular geometries. However, when either the size
of the mesh or the number of partitions increase to critical
values (in our case, the figures are ⇥ 1 billion nodes for
the mesh and ⇥ 300,000 partitions) most of widely used
tools simply fail, meaning that they are unable to manage the
problem (that is much worse, of course, than producing a sub-
optimal solution). For instance, the well-know tool for graph-
partitioning METIS[15], even in its parallel version, requires
to allocate on each processor a block of memory of size
equal to the square of the number of partitions. On the other
hand, preliminary tests showed that a naive partitioning based
only on a balanced number of mesh nodes on each processor
produced a very poor load balancing. Finally, we found a
very effective solution by using PT-SCOTCH, the parallel

Figure 3. The distribution of the 294,912 tasks with respect to the number
of tasks with which they are required to communicate

version of the graph/mesh partitioning tool called SCOTCH
[13]. One of the interesting features of SCOTCH is that its
running time is linear in the number of edges of the source
graph, and logarithmic in the number of vertices of the target
graph for mapping computations. Moreover, a test carried out
on a smaller case (⇥ 20, 000, 000 mesh nodes partitioned
among 1, 024 processors) showed that SCOTCH produces a
partitioning scheme superior to METIS, that is, with a better
load balancing taking into account both the number of mesh
nodes per processor and the total communication among the
processors. Unfortunately, also PT-SCOTCH runs out of mem-
ory on our real test case that produces a graph with almost one
billion of vertex and ⇥ 18 billion edges. Our workaround has
been to use a pruned graph which represents the connectivity
along the six main directions only (+x,�x,+y,�y, +z,�z).
This reduces the number of edges in the graph by 66% (by
eliminating the 12 edges: +x + y, +x � y, etc). We double-
check that, on a smaller test-case, the resulting partition is, for
all practical purposes, very similar to the partition produced
for the whole graph. By using the pruned graph we managed
to create the required partition (294, 912 domains) for the large
test case on a cluster using 128 Intel cores (Xeon E5520 @
2.27 Ghz) with a total of 256 GB of memory. It is interesting to
look at the distribution of the tasks with respect to the number
of other tasks with which they are required to exchange data,
following the partitioning scheme produced by Scotch. The
result is reported in figure 3 and shows that, on average, each
task exchanges data with other 15 tasks.

We create the communication pattern by the following “run-
time” pre-processing procedure. Mesh nodes are assigned to
tasks according to the partition created as described above.
Each mesh node is also labeled, in the input file, with a tag
that identifies it as belonging to a specific subregion of the
computational domain (e.g., fluid, wall, inlet, outlet). After the
assignment of the nodes to the tasks, the pre-processing phase
begins. Basically, each task queries which tasks own the nodes

Domain Decomposition

http://openclipart.org
Thursday, October 25, 12
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IRREGULAR DOMAIN DECOMPOSITION
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MINIMIZING MEMORY FOOTPRINT

• Sequoia Blue Gene/Q total system memory:  
1.6 PB
• Indirect addressing is mandatory, and only 

the first step
• Initialization and load balance now 

significantly more challenging

Full body 
arterial

20 micron 9 micron

Data Grid 31009 x 11298 x 84863 68909 x 25107 x 188584 

Data memory 8.22 PB 90.2 PB

Fluid nodes 45.8 billion 509 billion

Fluid memory 25.3 TB 140.7 TB

Fluid Fraction 0.15% 0.15%
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MEMORY LAYOUT SCHEMES

Herschlag et al. IPDPS 2018
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Strong Scaling on Homogeneous Systems

Aortofemoral

Aorta

Cerebral

Randles et al. Journal of Computational Science, 2015
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Identify Tipping Point For Model Use

Above a set fluid volume fraction, semi-direct addressing is more 
efficient than the conventional indirect addressing on GPUs.
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STRONG SCALING

Ideal scaling
Ideal w/ load imb.
84 μm
42 μm
21 μm
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No. GPUs
101 102 103 104

HARVEY scales efficiently on 16k nodes of the Titan 
supercomputer.

Herschlag et al. IEEE TPDS 2021
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IN SITU AND IN TRANSIT VISUALIZATION

● Large-scale simulations create 
petabytes of data per 
timestep.

● The gap between the speed of 
computation and speed of I/O 
is increasing with next 
generation systems.

● Developing methods to enable 
efficient, in situ and in transit 
visualization and analysis.

● Enabling communication free 
and re-wind capabilities.

Ames et al. LDAV 2019
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LOW OVERHEAD REPLAY

Ames et al. LDAV 2019
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HarVis: interaction with HARVEY

• Using devices like the Occulus Rift, HTC Vive, and 
zSpace to investigate different modes of interaction

Shi et al. under review IEEE TVCG
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