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COVID-19 Antivirals 

• FDA-approved: Remdesivir (polymerase inhibitor)

• In clinical trials:
– Molnupiravir (polymerase inhibitor, phase II/III)
– PF-07321332 (protease inhibitor, phase-I)
– PF-07304814 (protease inhibitor, phase-I)
– Monoclonal antibodies (entry inhibitors, phase I/II)

• $3.2B US federal funding for a COVID-19 antiviral by end of 2021

https://covdb.stanford.edu/page/covid-reviev
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Typical Drug Discovery Timeline

Allen D. Roses, Nature Rev Drug Disc. 7, 807-817 (2008)

Nature Reviews | Drug Discovery

Target
identification

Target assay 
construction
and screening

Target validation, 
hits-to-leads
medicinal 
chemistry safety

Phase I:
safety

Phase II:
efficacy,
safety

Phase III:
efficacy,
safety

FDA review
and approval

12–15 years

Target screen
$1–4 million

Safety package
$12–15 million

Target
screen 2 years

Efficacy proof of concept
1

2
3

4

of PGx. However, until recently, academic 
physicians only had direct access to new 
drugs for patients after they were approved 
for registration and marketed. Because of the 
rigorous and confidential regulatory guid-
ance during drug development, it is likely 
that new forms of collaborations between 
industry, academic institutions and health-
care systems will become more common 
during this process. Such collaborations will 
facilitate the involvement of non-company 
PGx scientists in efficacy PGx. They will 
also foster effective, individualized health 
care and enable academic research groups to 
access the development process, dispelling 
the traditional view of PGx as a largely post-
marketing tool. PGx will be central to iden-
tifying those patients who can be expected 
to respond well to a drug, or those at risk of 
developing an adverse event6,18,19.

With this in mind, this article first dis-
cusses the significance of emerging genetic 
approaches, such as genome-wide associa-
tion studies, for the identification of novel 
drug targets and the subsequent applica-
tion of this knowledge in PGx-based drug 
development strategies. Recent examples 
illustrating the use of PGx to improve drug 

efficacy and safety are then used to highlight 
key issues in the future application of PGx 
in drug discovery and development.

Genetic strategies to identify drug targets
Recent advances in genomic knowledge and 
the development of tools for high-throughput 
genotyping have made genome-wide asso-
ciation studies increasingly feasible (BOX 1). 
Gene localization and characterization of 
disease variants are now performed routinely, 
with the largest challenges being the size of 
the clinical studies. The size of these studies 
bring additional issues including obtaining 
appropriate informed consent and the com-
pleteness of the clinical databases, as well as 
the inherent genetic heterogeneity of most 
complex diseases (see BOX 2 for a discussion 
of earlier approaches to establish association 
between genetic variation and disease).  
In the past 18 months, multiple examples of 
genome-wide association studies for complex 
diseases such as Alzheimer’s disease, type 2 
diabetes mellitus, Crohn’s disease and  
various cancers have been published20–39. 
The examples of Alzheimer’s disease and 
type 2 diabetes are discussed in more detail 
in BOX 3 and BOX 4, respectively.

After approximately a year of publication 
experience with genome-wide association 
studies, there is a growing appreciation 
that such studies, even with relatively large 
patient and control cohorts, are not as 
robust in identifying associated loci as first 
thought40,41. Confirmation and validation 
studies for initial genome-wide association 
study data are hard to find39. In the academic 
literature, the highly significant association 
of apolipoprotein E (APOE) and Alzheimer’s 
disease (BOXES 2,3) is well known but, to 
date, this high degree of association has 
not been attained in any other disease-
specific genome-wide association study. 
Nevertheless, there are several significant 
gene associations with diseases after appro-
priate statistical corrections for multiple 
tests. For example, in one epidemiological 
population-based collection, an unantici-
pated, but retrospectively rational, gene vari-
ant was highly associated with hypertension 
with a p value of 0.00006 after correction for 
the number of analyses42–44. Confirmation 
of these data with genome-wide associa-
tion screening is in progress simultaneously 
with the development of chemical screening 
assays for this target. As more genome-
wide association data for complex diseases 
become accessible, it can be expected that 
additional putative novel drug targets will  
be identified.

The current limited experience with  
single nucleotide polymorphism (SNP)-
based genome-wide association using more 
than 500,000 SNPs (example studies are 
described in REFS 22,45–57) has created a 
fascinating situation. The time required 
to genotype and analyse the data derived 
from pre-existing clinical collections can be 
as little as several weeks. However, owing 
to the large number of SNPs that need to 
be considered for statistical corrections, 
many genetic loci have only borderline sig-
nificance39. Some genome-wide association 
studies have confirmed earlier genetic  
studies — for example in type 2 diabetes 
(BOX 4) — but many of the loci identified 
so far may still represent statistical false 
positives26,39. The availability of large, well-
characterized collections of several thousand 
patients is now recognized as one of the  
limiting factors for statistical interpretation.

As more data from complex diseases 
become available, several unfortunate 
realities are becoming clear. The first is that 
most complex diseases, unlike Alzheimer’s 
disease (BOXES 2,3), do not have highly  
significant associations (p<1 r 10–8) after  
correction for 5 r 105 SNP tests. The second  
is that there are usually 10–100 genes 

Figure 1 | Drug discovery and development pipeline and the contribution of PGx. This provides 
a summary of the sequential steps that are necessary for a drug to progress through the research and 
development pipeline. The most crucial step is the proof of concept for efficacy, which is early on in 
drug development but can be considered an essential end to a drug discovery programme of 5–7 
years’ duration. There are four phases for application of pipeline pharmacogenetics (PGx), each 
discussed in the text. First, Phase I and early Phase II (side effects that may not be severe but could 
be avoided by patient identification or dose adjustments). Second, Phase IIb–Phase III (efficacy PGx, 
especially at proof of concept, that may affect Phase III programme design). Third, Phase III (safety 
monitoring for potentially avoidable adverse events or serious adverse events and improving the 
benefit–risk ratio). Fourth, Phase IV (surveillance and post-marketing risk-management programmes). 
After the design and construction of a target for chemical screening, it is now possible to outsource 
this phase at a cost of US$1–4 million, depending on the libraries and extent of screening. In the past, 
large chemical libraries were a vital resource for large pharmaceutical companies and a major road-
block to external screening. Now the roadblock to academia is the cost. A lead candidate that has 
survived structure–activity relationship studies to optimize the biological effect then must pass a 
range of metabolic, safety and cytogenetic studies that can also be out-sourced — at a cost of $12–15 
million per molecule. This is a large hurdle for academia and many biotechnology companies. After 
passing the preclinical safety hurdles, a molecule ready for development could be worth many times 
the cost of the safety packages (or not). The return on investment through this step can be quite high 
for those who can take the risk.

PERSPECT IVES

808 | OCTOBER 2008 | VOLUME 7  www.nature.com/reviews/drugdisc

Virtual Screening

Can we shorten the molecule screening 
phase to a few months using HPC with GPUs?
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Structure-based Drug Discovery

• Structure-based drug discovery uses 
three-dimensional models of small 
molecules binding to protein “receptors” 

• For COVID-19 many groups are targeting 
the viral proteins in order to find molecules 
that can inhibit viral entry and replication

• These small molecule compounds, or 
“ligands” could be used to develop 
potential drugs

• By binding to the receptor’s binding site, a 
small molecule can inhibit the protein’s 
action

• Molecular docking is an optimization 
calculation within a biomolecular 
simulation

Two of the SARS-CoV-2 protein 
targets of close to 30 total 

proteins 
Vermaas, Josh Vincent, Ada Sedova, Matthew Baker, Swen Boehm, David Rogers, Jeff Larkin, Jens Glaser, Micholas Smith, Oscar Hernandez, and 
Jeremy Smith. "Supercomputing Pipelines Search for Therapeutics Against COVID-19." Computing in Science & Engineering (2020). 
https://doi.org/10.1109/MCSE.2020.3036540

https://doi.org/10.1109/MCSE.2020.3036540
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Searching the Vast Chemical Space

Chemical synthesis companies promise to be 
able to synthesize over 1 billion different 

compounds

Total synthesis space contains about  1060 

chemical compounds*

Experimental assays can test about 104 in the 
most high-throughput settings

*Virshup et al. J. Am. Chem. Soc. 2013



77 Open slide master to edit

Docking 1.3 billion compounds to SARS-CoV-2 
protein in under 24 hours

using all of Summit’s GPUs and CPUs

Drug molecule binds to SARS-CoV-
2 protein as simulated on Summit 

with Autodock-GPU

Enamine REAL 
database: 1.3 B 
drug-like small  

molecules

• Docked 2.6 billion compounds in 2 days using all of 
Summit (1.3B/day)

• Full-accuracy molecular docking with optimization of  
ligand internal coordinates and generating 20 poses 
per docking
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1. High-throughput AutoDock-GPU 
on Summit: Docking Billions of 
Compounds at Scale for COVID-
19 Drug Discovery

2. Accelerated Kernels for 
Machine Learning Feature 
Calculations: Better Predictions 
via ML-based Rescoring

3. Data Analytics on Massive 
Outputs Within a GPU-
accelerated Virtual Laboratory

Accelerating the End-to-end Pipeline >50×

Glaser, J., Vermaas, J.V., Rogers, D.M., Larkin, J., LeGrand, S., Boehm, S., Baker, M.B., Scheinberg, A., Tillack, A.F., Thavappiragasam, M. and 
Sedova, A., 2021. High-throughput virtual laboratory for drug discovery using massive datasets. The International Journal of High Performance 
Computing Applications, https://doi.org/10.1177/10943420211001565

https://doi.org/10.1177%2F10943420211001565
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Tackling Immediate Scaling Challenges for High-
throughput Docking Calculations on Summit

• There	were	multiple	codes	
to choose	from	at	the	start	
of the	pandemic
§ AutoDock-GPU	from	

Scripps Research	was	in	
development

• Most docking codes only 
use the CPU
§ 97% of the FLOPs on Summit 

are on the GPUs
• In	original	code,	each	

small molecule/protein	pair	
runs	a distinct	executable
§ Each	instance	reads	and	

reloads the	protein	file	even	if	the	
same one	is	used	repeatedly

AutoDock-GPU
• A new GPU version from Scripps based on the widely 

used AutoDock4 program
• Well supported
• Open Source
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Production High-throughput Version: Summit

• GPU	version	gains	an	average	of	
350× speedup	over	CPU	serial	
version	for	our	test	set	(Enamine	
Diversity	Set,	10K	different	
compounds)
§ Individual calculations take seconds

• File loading and CUDA setup are 
a significant portion of the 
runtime
§ Reusing CUDA context, data and files 

between ligands substantially 
accelerates the runs

§ Average of 50× speedup per 
Summit node vs. CPU version run 
on all 42 cores

LeGrand, S., Scheinberg, A., Tillack, A.F., Thavappiragasam, M., Vermaas, J.V., Agarwal, 
R., Larkin, J., Poole, D., Santos-Martins, D., Solis-Vasquez, L. and Koch, A., 2020, 
September. GPU-Accelerated Drug Discovery with Docking on the Summit 
Supercomputer: Porting, Optimization, and Application to COVID-19 Research. 
In Proceedings of the 11th ACM International Conference on Bioinformatics, 
Computational Biology and Health Informatics (pp. 1-
10). https://doi.org/10.1145/3388440.3412472

https://doi.org/10.1145/3388440.3412472
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Deploying Autodock-GPU on Summit at Scale

Fireworks Redis Queue
• Mongo-DB	hosted	on	OLCF	Slate/Marble	Kubernetes

• Fireworker script	interacts	with	task	graph

• Largest	deployment	to	date	(27,600	fireworkers)

• More	components	increased	development	cycle	time

• Persistent	database	state	captures	provenance	data	
and	allows	checkpoint/restart

• https://github.com/materialsproject/fireworks

• Redis-DB	hosted	on	job-launch	node

• Custom	script	interacts	with	ready/complete/error	
sets

• Small	code	size,	special	purpose	solution

• Persistent	database	state	allows	checkpoint/restart

• Provenance	data	captured	in	per-node	log

• Simplified	resqueue design	
(https://github.com/resque/resque)

https://github.com/materialsproject/fireworks
https://github.com/resque/resque
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1. High-throughput AutoDock-GPU 
on Summit: Docking Billions of 
Compounds at Scale for COVID-
19 Drug Discovery

2. Accelerated Kernels for Machine 
Learning Feature Calculations: 
Better Predictions via ML-based 
Rescoring

3. Data Analytics on Massive 
Outputs Within a GPU-
accelerated Virtual Laboratory

Accelerating the End-to-end Pipeline >50×
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Feature Calculation for Machine Learning

• Implemented a pairwise contact histogram kernel
• Accelerate parsing of PDBQT coordinate files using

tokenization on GPU with string methods in cudf
• Stream all 20 conformations per ligand from a CUDA 

data frame to the GPU kernel using zero-copy

Per-node time to solution,
Rescoring on 72 nodes
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1. High-throughput AutoDock-
GPU on Summit: Docking 
Billions of Compounds at 
Scale for COVID-19 Drug 
Discovery

2. Accelerated Kernels for 
Machine Learning Feature 
Calculations: Better 
Predictions via ML-based 
Rescoring

3. Data Analytics on Massive 
Outputs Within a GPU-
accelerated Virtual 
Laboratory

Accelerating the End-to-end Pipeline >50×
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2

RAPIDS
Accelerating GPU Data Science End-to-End

cuDF cuIO
ETL and Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch, 
TensorFlow, MxNet

Deep Learning

cuXfilter <> pyViz
Visualization

Dask

GPU Memory

Accelerated Data Analytics Key Concepts

Apache Arrow memory management avoids the serialization-deserialization bottleneck

NVIDIA RAPIDS 
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Front-end cluster with GPUs 
(Marble/Slate)

Back-end Supercomputer with
high-memory GPUs + node-local
storage

(Summit)

1.3 TB of 
parquet files 
per docking

• User interface
• IPython-based
• Interactive

• Connection
• Task Scheduling across

nodes/GPUs

Accelerated 
SQL queries

• Accelerated Data Analytics
• Machine Learning
• Visualization

Accelerated Data Analytics “Virtual Lab” at OLCF

We are analyzing TBs of data in seconds/minutes using Summit’s GPUs
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Interactive HPC for Scientific Productivity 

Demo: Virtual Lab using Summit’s GPUs

Goal: analyze 1.3B docking results in seconds
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Strong scaling of database query processing
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Figure 6: Runtime comparison for the CPU AutoDock4 code
(gray), AutoDock-GPU without pipelining (red), and the
pipelined AutoDock-GPU code (blue), running on Summit
to compute optimal poses for the 10.5k ligand Enamine di-
versity dataset against both PLpro andMpro structures. The
violin plots show the distribution of individual runtimes
for receptor-ligand combinations, with the minimum, max-
imum, and median runtimes for each combination (in sec-
onds) reported to the side of the violin plots. The aggregate
runtime for the full 10.5k ligand set is provided in bold text,
reported in core-hours or GPU-hours as appropriate.

7.2 Per-node performance
GPU accelerated docking with AutoDock-GPU is cheaper consid-
ering hardware and electricity costs than comparable CPU ap-
proaches because it is signi�cantly faster. The aggregate runtime
for AutoDock4 on a representative set of ligands and receptors is
⇠ 350 times larger than the comparable AutoDock-GPU run (Fig-
ure 6). Accounting for the 7:1 CPU:GPU ratio on Summit, per-node
performance acceleration is 50⇥. Each billion-ligand calculation
would have taken nearly 2 months utilizing all of Summit’s CPUs
rather than a single day on its GPUs. The overall improvement
in the aggregate runtime is driven primarily by the reduction in
runtime for the fastest cases where I/O and setup constituted a
larger fraction of the total runtime, which are over 600⇥ faster for
AutoDock-GPU compared with AutoDock4. By comparison, the
most di�cult ligands whose performance is limited by algorithmic
constraints are only approximately 300⇥ faster (Figure 6).

The speedup di�erential emphasizes how critical the context
and receptor reuse optimizations truly were. Improving mundane
setup steps by removing unneeded data movement (Table 2) by
pipelining the computation delivered a nearly 4⇥ speedup compared
with previous versions of AutoDock-GPU that operate on a single
ligand/receptor pair (Figure 6). Further improvement in accelerating
AutoDock-GPU for di�cult ligands may be possible. The average
performance for AutoDock-GPU utilizes less than 10% of the peak
FLOPs available on a V100 due to the considerable heterogeneity
within the genetic optimization algorithm, and in particular the
energy evaluation function in AutoDock-GPU.

Table 6: Contacts calculation for rescoring, showing per lig-
and time, per node throughput and time to solution on N =
72 Summit nodes.

Tligand [ms] ligs/N s Tparse,N=72 TTS

CPU 271.4 154.76 3.216h 32.407h
GPU 0.3872 15,494.81 0.314h 0.323h

Speedup 700⇥ 10.24⇥ 100.12⇥

Table 7: Complexity of query types

Query Type complexity

Init O(1)
Count O(N )

Histogram O(N )

Sort O(N logN )

Hash join (partition) O(N +M)

Hash join (join) O
⇥
(N /Npart,N ) ⇥ (M/Npart,M )

⇤

7.3 Rescoring
Following docking, rescoring must take place, which had become
the productivity bottleneck given the rapidity of the docking. Rescor-
ing, limited by the contact calculation, had a longer walltime on
a modest number of CPUs than the docking calculation itself (Ta-
ble 6). We benchmark the per node throughput using 42 CPUs or 6
GPUs per node, respectively, measured in in ligands per second on
a node. The speed-up achieved per ligand calculation is 700x, and
100x per node. Streaming the I/O to load the PDBQT coordinates
directly into the GPU substantially reduced the timeTparse to parse
the coordinate �les. This unavoidable I/O now is the remaining
bottleneck after the custom GPU kernels substantially accelerate
the contact calculations at the heart of the rescoring algorithm.

Contact calculations are a better �t for GPU architectures, as the
pairwise distance map uses shared memory with fast 32bit atomics.
Thus, the 100⇥ larger throughput compared against the original
CPU-based implementation in oddt leverages the GPUs on Summit.
We anticipate backporting this feature in the near future as a service
to the community.

7.4 Database Query Processing
7.4.1 Docking data set. In analyzing the docking results, we have
established a work�ow that involves joining together the per-ligand
scores over the ligand name, a 12-20 character string column used
as a common index. Then we sort the scores to �lter out the top
100,000 hits according to a given scoring method, compute the
histogram and add structural information, i.e. the 3D conformation
and the SMILES string representing the 2D chemical structure of
the molecule as extra columns. We repeat these steps for a total of
four di�erent scoring methods.

Table 7 shows the complexity of di�erent types of database
queries required for completion of the analysis portion of the drug
discovery pipeline. Among those, joins represent the greatest com-
putational challenge because of the reshu�ing of sub-partitions,

9
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From Virtual Lab to Wet-lab Experiments 

Goal: Validate top compounds from 1.3B Gigadocking predicted via  
the “Virtual Lab”

Purchased and
assayed 323
compounds 
predicted

by Gigadocking

(testing by 
Stephanie 

Galanie, ORNL)
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Postera.ai ”Moonshot” Mpro data set

“Crowd-sourcing” effort

~1000 activities
~500 crystal structures

https://covid.postera.ai/covid
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Hit Expansion for SARS CoV-2 Main Protease
• We computationally predicted new non-covalent inhibitors that

1. maximize scaffold similarity to a known inhibitor
2. make similar docking contacts with the protein target

2D neighborhood expansion (MAP4) 3D contact expansion (giga-docking)
Moonshot x11612 (xtal) and

Z1528050012 (docked)
Capecchi, A., Probst, D. and Reymond, J.L., 2020. One molecular 
fingerprint to rule them all: drugs, biomolecules, and the 
metabolome. Journal of Cheminformatics, 12(1), pp.1-15
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Hit Expansion for SARS CoV-2 Main Protease

• Purchased 100 Molecules from Enamine

• Experimental screen for activity against SARS CoV-2’s main protease

Reference compound
from COVID Moonshot

(not assayed) Better Inhibition

Unpublished data
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New Crystal Structures from Hit Expansion

Z1530718726

• Three compounds were purchased from Enamine and protein structures solved 
at ORNL’s SNS facility

• Two of the compounds co-crystallized with the main protease and 
characterized using X-ray crystallography at room temperature

• Three additional compounds are undergoing crystallization trials

Unpublished data

Crystallization/Characterization: Daniel Kneller and Andrii Kovalevskyi (ORNL)
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New Language Model for Molecules
We developed a state-of-the-art, transformer-
based machine learning model to predict 
novel, synthesizable compounds

0.76 | 0.710.59 | 0.68

Results across a population
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https://code-int.ornl.gov/ueq/maskedevolution

?

OC/c1ccccc1Br OC/COc1ccccc1Br

Tokenize Mask Predict

Manipulating SMILES to create new molecules Example for a single molecule
Optimizing synthesizability and drug-likeness
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Conclusion
• A computational capability to accelerate the initial stages of drug 

discovery is essential to combat the current and future pandemics

• We performed a virtual screening of 1.37B small organic molecule 
compounds on all of Summit against the SARS CoV-2 main protease in 
under 24h and predicted novel inhibitors of Mpro

Data 
analytics

In-silico 
molecule
“synthesis”

High-throughput ↔ High-
Accuracy Virtual Screen

Biophysical 
characterization

Ongoing


