
Bob Crovella, 7/21/2020

CUDA CONCURRENCY

2

AGENDA

• Concurrency - Motivation
• Pinned Memory
• CUDA Streams
• Overlap of Copy and Compute
• Use Case: Vector Math/Video Processing Pipeline
• Additional Stream Considerations
• Copy-Compute Overlap with Managed Memory
• Multi-GPU Concurrency
• Other Concurrency Scenarios: Kernel

Concurrency, Host/Device Concurrency
• Further Study
• Homework

3

MOTIVATION
Recall 3 steps from session 1:

Naïve implementation leads to a processing flow like this:

->Wouldn’t it be nice if we could do this:

1. Copy data to the GPU

2. Run kernel(s) on GPU

3. Copy results to host

1. Copy data to the GPU

2. Run kernel(s) on GPU

3. Copy results to host

duration

duration

4

PINNED MEMORY

5

PINNED (NON-PAGEABLE) MEMORY

Pinned memory enables:

faster Host<->Device copies

memcopies asynchronous with CPU

memcopies asynchronous with GPU

Usage

cudaHostAlloc / cudaFreeHost

instead of malloc / free or new / delete

cudaHostRegister / cudaHostUnregister

pin regular memory (e.g. allocated with malloc) after allocation

Implication:

pinned memory is essentially removed from host virtual (pageable) memory

6

CUDA STREAMS

7

STREAMS AND ASYNC API OVERVIEW

Default API:

Kernel launches are asynchronous with CPU

cudaMemcpy (D2H, H2D) block CPU thread

CUDA calls are serialized by the driver (legacy default stream)

Streams and async functions provide:

cudaMemcpyAsync (D2H, H2D) asynchronous with CPU

Ability to concurrently execute a kernel and a memcopy

Concurrent copies in both directions (D2H, H2D) possible on most GPUs

Stream = sequence of operations that execute in issue-order on GPU

Operations from different streams may be interleaved

A kernel and memcopy from different streams can be overlapped

8

STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.

9

STREAM CREATION AND COPY/COMPUTE OVERLAP
Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:

10

STREAM EXAMPLES

K1,M1,K2,M2: K1
M1
K2

M2

K1,K2,M1,M2: K1
M1
K2

M2

K1,M1,M2: K1
M1 M2

K1,M2,M1: K1
M1M2

K1,M2,M2: K1
M2M2

Time

K: Kernel
M: Memcopy
Integer: Stream ID

11

EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH
(assumes algorithm decomposability)

Stream ID: 0 1 0 1 0 1 0

H->D copy

kernel

D->H copy

cudaMemcpy(d_x, h_x, size_x,
cudaMemcpyHostToDevice);
Kernel<<<b, t>>>(d_x, d_y, N);
cudaMemcpy(h_y, d_y, size_y,
cudaMemcpyDeviceToHost);

non-streamed

for (int i = 0, i<c; i++){
size_t offx = (size_x/c)*i;
size_t offy = (size_y/c)*i;
cudaMemcpyAsync(d_x+offx, h_x+offx,

size_x/c, cudaMemcpyHostToDevice,
stream[i%ns]);
Kernel<<<b/c, t, 0,

stream[i%ns]>>>(d_x+offx, d_y+offy,
N/c);
cudaMemcpyAsync(h_y+offy, d_y+offy,

size_y/c, cudaMemcpyDeviceToHost,
stream[i%ns]);}

streamed

Similar: video processing pipeline

12

DEFAULT STREAM

Kernels or cudaMemcpy… that do not specify stream (or use 0 for stream) are using the default stream

Legacy default stream behavior: synchronizing (on the device):

All device activity issued prior to the item in the default stream must complete before default stream item begins

All device activity issued after the item in the default stream will wait for the default stream item to finish

All host threads share the same default stream for legacy behavior

Consider avoiding use of default stream during complex concurrency scenarios

Behavior can be modified to convert it to an “ordinary” stream

nvcc --default-stream per-thread …

Each host thread will get its own “ordinary” default stream

Stream 1
Stream 2

Default stream

13

CUDALAUNCHHOSTFUNC() (STREAM “CALLBACKS”)

Allows definition of a host-code function that will be issued into a CUDA stream

Follows stream semantics: function will not be called until stream execution reaches that point

Uses a thread spawned by the GPU driver to perform the work

Has limitations: do not use any CUDA runtime API calls (or kernel launches) in the function

Useful for deferring CPU work until GPU results are ready

cudaLaunchHostFunc() replaces legacy cudaStreamAddCallback()

14

COPY-COMPUTE OVERLAP WITH MANAGED MEMORY

Follow same pattern, except use cudaMemPrefetchAsync() instead of cudaMemcpyAsync()

Stream semantics will guarantee that any needed migrations are performed in proper order

However, cudaMemPrefetchAsync() has more work to do than cudaMemcpyAsync() (updating of page
tables in CPU and GPU)

This means the call can take substantially more time to return than an “ordinary” async call – can
introduce unexpected gaps in timeline

Behavior varies for “busy” streams vs. idle streams. Counterintuitively, “busy” streams may result in
better throughput

Read about it:

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

In particular, with demand-paging

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

15

ASIDE: CUDAEVENT
cudaEvent is an entity that can be placed as a “marker” in a stream

A cudaEvent is said to be “recorded” when it is issued

A cudaEvent is said to be “completed” when stream execution reaches the point where it was recorded

Most common use: timing

Also useful for arranging complex concurrency scenarios

Event-based timing may give unexpected results for host activity or complex concurrency scenarios

cudaEvent_t start, stop; // cudaEvent has its own type
cudaEventCreate(&start); // cudaEvent must be created
cudaEventCreate(&stop); // before use
cudaEventRecord(start); // “recorded” (issued) into default stream
Kernel<<<b, t>>>(…); // could be any set of CUDA device activity
cudaEventRecord(stop);
cudaEventSynchronize(stop); // wait for stream execution to reach “stop” event
cudaEventElapsedTime(&float_var, start, stop); // measure Kernel duration

16

MULTI-GPU

17

MULTI-GPU – DEVICE MANAGEMENT
Not a replacement for OpenMP, MPI, etc.

Application can query and select GPUs

cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple host threads can share a device

A single host thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpyPeerAsync(…) for peer-to-peer copies

18

MULTI-GPU – STREAMS

Streams (and cudaEvent) have implicit/automatic device association

Each device also has its own unique default stream

Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can test if an event
is “complete”

Simple device concurrency:

cudaSetDevice(0);
cudaStreamCreate(&stream0); //associated with device 0
cudaSetDevice(1);
cudaStreamCreate(&stream1); //associated with device 1
Kernel<<<b, t, 0, stream1>>>(…); // these kernels have the possibility
cudaSetDevice(0);
Kernel<<<b, t, 0, stream0>>>(…); // to execute concurrently

19

MULTI-GPU – DEVICE-TO-DEVICE DATA COPYING

If system topology supports it, data can be copied directly from one device to another over a fabric (PCIE, or NVLink)

Device must first be explicitly placed into a peer relationship (“clique”)

Must enable “peering” for both directions of transfer (if needed)

Thereafter, memory copies between those two devices will not “stage” through a system memory buffer (GPUDirect
P2P transfer)

Limit to the number of peers in your “clique”

cudaSetDevice(0);
cudaDeviceCanAccessPeer(&canPeer, 0, 1); // test for 0, 1 peerable
cudaDeviceEnablePeerAccess(1, 0); // device 0 sees device 1 as a “peer”
cudaSetDevice(1);
cudaDeviceEnablePeerAccess(0, 0); // device 1 sees device 0 as a “peer”
cudaMemcpyPeerAsync(dst_ptr, 0, src_ptr, 1, size, stream0); //dev 1 to dev 0 copy
cudaDeviceDisablePeerAccess(0); // dev 0 is no longer a peer of dev 1

20

OTHER CONCURRENCY SCENARIOS

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…); // to execute concurrently

Kernel<<<b, t>>>(…); // this kernel execution can overlap with
cpuFunction(…); // this host code

21

STREAM PRIORITY

CUDA streams allow an optional definition of a priority

This affects execution of concurrent kernels (only).

The GPU block scheduler will attempt to schedule blocks from high priority (stream) kernels before blocks from low
priority (stream) kernels

Current implementation only has 2 priorities

Current implementation does not cause preemption of blocks

// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);
// create streams with highest and lowest available priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);

22

CUDA GRAPHS (OVERVIEW)

New feature in CUDA 10

Allows for the definition of a sequence of stream(s) work (kernels, memory copy operations, callbacks, host functions,
graphs)

Each work item is a node in the graph

Allows for the definition of dependencies (e.g. these 3 nodes must finish before this one can begin)

Dependencies are effectively graph edges

Once defined, a graph may be executed by launching it into a stream

Once defined, a graph may be re-used

Has both a manual definition method and a “capture” method

23

FUTURE SESSIONS

Analysis Driven Optimization

Cooperative Groups

24

FURTHER STUDY

Concurrency with Unified Memory:

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-
execution

CUDA Sample Codes: concurrentKernels, simpleStreams, asyncAPI, simpleCallbacks,
simpleP2P

Video processing pipeline with callbacks:

https://stackoverflow.com/questions/31186926/multithreading-for-image-processing-at-gpu-
using-cuda/31188999#31188999

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://stackoverflow.com/questions/31186926/multithreading-for-image-processing-at-gpu-using-cuda/31188999

25

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw7/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

