
Bob Crovella, 3/28/2019

COOPERATIVE GROUPS

2

Cooperative Groups

Threadblock Level

Grid Level

Multi-Device

Coalesced Group

Further Study

Homework

AGENDA

3

COOPERATIVE GROUPS

4

Scalable Cooperation among groups of threads

Flexible parallel decompositions

Composition across software boundaries

Obvious benefit: grid-wide sync

Examples include:
Persistent RNNs
Reductions
Search Algorithms
Sorting

Cooperative Groups: a flexible model for synchronization and
communication within groups of threads.

At a glance

5

LEVELS OF COOPERATION: PRE CUDA 9.0

__syncthreads(): block level
synchronization barrier in CUDA

SM

GPU

Multi-GPU

Warp
Warp

6

LEVELS OF COOPERATION: CUDA 9.0

SM

GPU

Multi-GPU

Warp
Warp

For device-spanning grid:
auto g = this_grid();

For multiple grids spanning GPUs:
auto g = this_multi_grid();

For CUDA thread blocks:
auto g = this_thread_block();

For current coalesced set of threads:
auto g = coalesced_threads();

For warp-sized group of threads:
auto block = this_thread_block();
auto g = tiled_partition<32>(block)

All Cooperative Groups functionality is
within a cooperative_groups:: namespace

7

THREAD GROUP

Base type, the implementation depends on its construction.

Unifies the various group types into one general, collective, thread group.

We need to extend the CUDA programming model with handles that can
represent the groups of threads that can communicate/synchronize

Thread
Group

Thread
Block
Tile

Thread
Block

Coalesced
Group

Grid
Group

Multi-Grid
Group

8

THREAD BLOCK

Implements the same interface as thread_group:

void sync(); // Synchronize the threads in the group

unsigned size(); // Total number of threads in the group

unsigned thread_rank(); // Rank of the calling thread within [0, size)

bool is_valid(); // Whether the group violated any API constraints

And additional thread_block specific functions:

dim3 group_index(); // 3-dimensional block index within the grid

dim3 thread_index(); // 3-dimensional thread index within the block

Implicit group of all the threads in the launched thread block

9

PROGRAM DEFINED DECOMPOSITION

CUDA KERNEL All threads launched

foobar(thread_block g)

thread_group tile4 = tiled_partition(tile32, 4);

thread_block g = this_thread_block();

thread_group tile32 = tiled_partition(g, 32);

All threads in thread block

Restricted to powers of two,
and <= 32 in initial release

10

GENERIC PARALLEL ALGORITHMS

__device__ int reduce(thread_group g, int *x, int val) {
int lane = g.thread_rank();
for (int i = g.size()/2; i > 0; i /= 2) {
x[lane] = val; g.sync();
if (lane < i) val += x[lane + i]; g.sync();

}
return val;

}

g = tiled_partition(this_thread_block(), 32);
reduce(g, ptr, myVal);

g = this_thread_block();
reduce(g, ptr, myVal);

Per-Block Per-Warp

11

THREAD BLOCK TILE
A subset of threads of a thread block, divided into tiles in row-major order

thread_block_tile<32> tile32 = tiled_partition<32>(this_thread_block());

thread_block_tile<4> tile4 = tiled_partition<4>(this_thread_block());

Exposes additional functionality: .shfl()
.shfl_down()
.shfl_up()
.shfl_xor()

.any()

.all()

.ballot()

.match_any()

.match_all()
Size known at compile time = fast!

12

STATIC TILE REDUCE

template <unsigned size>
__device__ int tile_reduce(thread_block_tile<size> g, int val) {
for (int i = g.size()/2; i > 0; i /= 2) {
val += g.shfl_down(val, i);

}
return val;

}

g = tiled_partition<16>(this_thread_block());
tile_reduce(g, myVal);

Per-Tile of 16 threads

13

GRID GROUP
A set of threads within the same grid, guaranteed to be resident on the device

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernel(…)

__global__ kernel() {
grid_group grid = this_grid();
// load data
// loop - compute, share data

grid.sync();
// device wide execution barrier

}

Device needs to support the cooperativeLaunch property.

cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, kernel, numThreads, 0);

14

GRID GROUP
The goal: keep as much state as possible resident

Shortest Path / Search Genetic Algorithms /
Master driven algorithms

Particle Simulations

Weight array perfect for
persistence

Iteration over vertices?
Fuse!

Synchronization
between a master block

and slaves

Synchronization
between update and
collision simulation

15

MULTI GRID GROUP
A set of threads guaranteed to be resident on the same system, on multiple devices

GPU A GPU B
Block 0 Block 1 Block 0 Block 1

Synchronize

__global__ void kernel() {
multi_grid_group multi_grid = this_multi_grid();
// load data
// loop - compute, share data

multi_grid.sync();
// devices are now synced, keep on computing

}

16

MULTI GRID GROUP
Launch on multiple devices at once

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernelMultiDevice(…)

struct cudaLaunchParams params[numDevices];
for (int i = 0; i < numDevices; i++) {

params[i].func = (void *)kernel;
params[i].gridDim = dim3(…); // Use occupancy calculator
params[i].blockDim = dim3(…);
params[i].sharedMem = …;
params[i].stream = …; // Cannot use the NULL stream
params[i].args = …;

}
cudaLaunchCooperativeKernelMultiDevice(params, numDevices);

Devices need to support the cooperativeMultiDeviceLaunch property.

17

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group active = coalesced_threads(); Size: 8

18

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

19

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.thread_rank();210

Automatic translation to rank-in-group!

20

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

Automatic translation from rank-in-group to
SIMD lane!

g1.thread_rank();210

21

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1

Internal Lane Mask

22

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

active.sync()

} // end block

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1

23

ATOMIC AGGREGATION
Opportunistic Cooperation Within a Warp

inline __device__ int atomicAggInc(int *p)
{

coalesced_group g = coalesced_threads();
int prev;
if (g.thread_rank() == 0) {

prev = atomicAdd(p, g.size());
}
prev = g.thread_rank() + g.shfl(prev, 0);
return prev;

}

24

FURTHER STUDY
GTC 2017 On-Demand Recording:

http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-
scalable-cuda.pdf (slides)

http://on-demand.gputechconf.com/gtc/2017/video/s7622-perelygin-robust-scalable-cuda-
parallel-programming-model.mp4 (recording)

Sample Codes:

conjugateGradientMultiBlockCG, conjugateGradientMultiDeviceCG, reductionMultiBlockCG,
warpAggregatedAtomicsCG

Blog:

https://devblogs.nvidia.com/cooperative-groups/

Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

Persistent kernels, grid sync, RNN state:

https://svail.github.io/persistent_rnns/

http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-scalable-cuda.pdf
http://on-demand.gputechconf.com/gtc/2017/video/s7622-perelygin-robust-scalable-cuda-parallel-programming-model.mp4
https://devblogs.nvidia.com/cooperative-groups/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://svail.github.io/persistent_rnns/

25

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw9/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

