

ABOUT THIS COURSE

3 Part Introduction to OpenACC

= Module 1 — Introduction to OpenACC

= Module 2 — Data Management with OpenACC
= Module 3 — Optimizations with OpenACC

Each module will have a corresponding lab

OpenAcc <ANVIDIA.

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with
OpenACC.

OpenACC <AnviDIA

MODULE 1 OUTLINE

Topics to be covered

What is OpenACC and Why Should You Care?

Profile-driven Development

First Steps with OpenACC

Lab 1
Where to Get Help

OpenACC <AnvIDIA.

INTRODUCTION TO OPENACC

Oqgg ACC <ANVIDIA.

3 WAYS TO ACCELERATE

APPLICATIONS
Applications
. . Compiler Programmin
Libraries Omp I J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

0penACC nvioia _ OpenACC)/

OPENACC is...

Add Simple Compiler Directive

a directives-based parallel
programming model
designed for performance
and portability.

main()
{
<serial code>
#pragma acc kernels

{

<parallel code>

}

}

OpenACC

OpenAcc <@ANVIDIA.

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data /{
Movement

#pragma acc parallel

y {
Initiate /#pragma acc loop gang

Parallel for (i = 0; i < n; ++1) {
Execution #pragma acc loop vector
for (J =05 J < nj ++]) {
Optimize c[i][3] = alil[3] + b[i][]];
Loop }ooo
=’ OpenACC
} pen

Directives for Accelerators

}
OpenACC <AnvIDIA.

* [ncremental
 Single source

° Interoperable

e Performance portable
e CPU, GPU, Manycore

OPENACC STRENGTHS

Incremental Single Source

Low Learning Curve

. Maintai st = Rebuild the same code = OpenACC is meant to
aintain existing on multiple be easy to use, and

sequential C(_)de architectures easy to learn

" Add annotatlon_s to = Compiler determines * Programmer remains
expose Par.allellsm how to parallelize for in familiar C, C++, or

= After verifying the desired machine Fortran
correctness, annotate « Sequential code is = No requirement to
more of the code maintained learn low-level details

of the hardware.
G J G J \ J

OpenACC <AnviDIA

OPENACC: INCREMENTAL

Begin with a working

Incremental

Enhance Sequential Code sequential code.
#pragma acc parallel Tloop
= Maintain existing for(i = 0; i < Nj i++)
sequential code o Joop code > o
= Add annotations to ! Parallelize it with OpenACC.
expose parallelism
g s #pragma acc parallel Tloop
= After verifying For(i = 0; i < N; i++)
correctness, annotate {
more of the code < Toop code > Rerun the code to verify

} correctness and
performance

\ J

nnnnnnnnnnnnnnnnnnnnnnnnnn

OPENACC: SINGLE SOURCE

. The compiler can ignore your
Single Source OpenACC code additions, so the same

code can be used for parallel or
sequential execution.
» Rebuild the same code
on multiple
x86 CPU architectures int main(){
ARM CPU = Compiler determines
how to parallelize for el 1
AMD GPU the desired machine :ﬁg:i‘f’:i ici p";’"‘i <eN; ‘i’jf)
= Sequential code is < loop code >
NVIDIA GPU maintained
PEZY-SC
\, J

OpenACC <AnviDIA

nnnnnnnnnnnnnnnnnnnn amming

OPENACC: PROGRAMMABILITY

Parallel Hardwar
CPU ? allel Hardware
p— EEEEEEEEEEEEERER
EENEEEEEEEEEEEER
EENEEEEEEEEEEEER .
EEEEEEEEEEEEEEEE Low Learning Curve
EENEEEEEEEEEEEER
S—— EENEEEEEEEEEEEER
EENEEEEEEEEEEEER .
EEEEEEEEEEEEEEEE = OpenACC is meant to
ENNEEEEEEEEEEEER
EEEEEEEEEEEEEERN be easy to use, and
: easy to learn
int main(){ V The programmer will y _
give hints to the u Programmer remains
<sequential code> |) compiler. in familiar C, C++, or
##tpragma acc kernels <«— Compiler Fortran.
{p & Hint = No requirement to
<parallel code> The compiler leﬁ[Ln I?]W'(ljevel details
} parallelizes the code. of the hardware.
} \ y

OpenAcc <ANVIDIA.

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC?

3 OF TOP 5 HPC APPS 5 OF 13 CAAR CODES ACCELERATED APPS

‘ /A\) /1 "
Intersect360 5Ll rr, "', I '_' i} o :

RESEARCH
GTC16 GTC17 GTC18 GTC19

725 TRAINED EXPERTS SLACK MEMBERS 160,000+ DOWNLOADS
| PGl
NS]

Community
GTC17 GTC18 GTC19 L EDpDITION —

GAUSSIAN 16 ANSYS FLUENT

‘ ‘ Using OpenACC allowed us to continue
development of our fundamental
algorithms and software capabilities
simultaneously with the GPU-related
‘work. In the end, we could use the
same code base for SMP, cluster!
network and GPU paralle.ism. PGI's
compilers were essential to the success

of our a¥forts.

& OpenACC made it practical to
develop for GPU-based hardware
while retaining a single source for
almost all the COSMO physics
code.

BE We've effectively used
OpenACC for heterogeneous
computing in ANSYS Fluent
with impressive performance.
We're now applying this work
to more of our models and
new platforms. mm

I [0 For VASP, OpenACC is the way
forward for GPU acceleration.
Performance is similar and in some
cases better than CUDA C, and
OpenACE dramatically decreases
GPU development and maintenance
efforts. We're excited to collaborate
with NVIDIA and PGI as an carly —
adopter of CUDA Unified Memory.

SYNOPSYS MPAS-A

—~
Al NUM g 3
4 P R

The CAAR project provided us with BB« Porling our unslructured C++ Using OpenACC, we've GPU- Our team has been evaluating

B canly access to Summit hardware: and CFD solver FINE/Open to GPUs - lerated the Synopsys TCAD - "5 OpenAcc as a pathway to
access to PGI compiler experts. Bath aoce e) \ ¥ ¥ s performance portability for the Model
of these were critical to our success. xlng_ﬂpenA_;C :”‘"" ':"e Sentaurus Device EMW simulator g for Predition (PAS) almespheric
PGI's DpendCC support remains (he €n impossibie two or three to speed up optical simulations of -~ a g) | lel. Using this approach on t
best available and is competitive with pa—— years ago, but OpenACC has image sensors. GPUs are key to m"s Mm‘iﬂi’;ﬁ;’;ﬁ ;‘““fw
much more intiusive prograniming B developad enough that we're improving simulation throughput & P|mm6ﬁu T !
madel approaches. % - now getting some really good in the design of advanced image socketed Intel Xeon nodes on our new

L B | ’ ‘ ' results. sensors. Cheyenne supercomputer. ——

VMD GAMERA

P

With OpenACC and a compute
node based on NVIDIAs Tesla
P100 GPU, we achieved more
than a 14X speed up over a K
Computer node running our
earthquake disaster simulation
code mm

. Due to Amdahl’s law, we need to port
WEEE S more parts of our code to the GPU If were

going to speed it up. But the sheer
number of routines poses a challenge.
OpenaCC directives give us a low-cost
approach ta getting at least some speed-
up out of these second-tier routmes. In
many cases It's completely sufficient
because with the cument algorithms, GPU
performance is bandwidth-bound. .

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

W sty (v of Totyn

IBM-CFD

PWscf (Quantum
ESPRESSO) MAS

Adding OpenACC fnto MAS has given us

In an academic environment

DDENALL < prove o be 3 hand! far CUDA Fortran gives us the full

S maintenance and speedup of existing S B computaticnal engineers and researchers 1o = pertormance potential of the CUDA 7% the ability to migrate medium-sized
codes is a tedious task. QpanACC oblain fast sokmon of non-linear dynamcs programming model and NVIDIA GPUS.) y ‘ simulations fr_um a rmln node CPU
provides a great plattorm for ;’;;"":: :‘1:: nm“;;‘;‘:"z :;"’:“:':-‘“" Wi leveraging the potental of expial ¢ 1|.m_m ::, a single multi-GPU \r.fw-l_“

sclentsts o A Conputrg o b P e data movement, ISCUF KERNELS The mplementation ieided o portatie
both tasks wihout involving a lot of components of o legacy cod=s 1o GPU directives give s productidly and single-source code for both CPU and
efforts or manpower In speeding up the Espacsally the routines Iolving 30arth aKgarthm source code mamanabity. I's he best GPU runs. Future work will add
entire computations! task. ana martx 15 haws bocn v of both wordds OpenACC to the' remaining model
o e overall suakality of e tock "R | features, enabling GPU-accelerated -

realistic solar storm modeling.

OPENACC SYNTAX

Oqgg ACC <ANVIDIA.

OPENACC SYNTAX

Syntax for using OpenACC directives in code

#pragma acc directive clauses I$acc directive clauses
<code> <code>

= A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

= A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

= “acc” informs the compiler that what will come is an OpenACC directive
= Directives are commands in OpenACC for altering our code.

= Clauses are specifiers or additions to directives.
OpenAcc <ANVIDIA.

EXAMPLE CODE

Oqgg ACC <ANVIDIA.

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

OpenACC <AnVIDIA.

nnnnnnnnnnnnnnnnnnnnnnnnnn

EXAMPLE: JACOBI ITERATION

= |teratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

= Common, useful algorithm

= Example: Solve Laplace equation in 2D: V2f(x,y) = 0

A(i,j+1)
»
AG-1,7)—% A(i+1,])
A(1,3)
o A i AE-LD+AGCHL)+AG] - D + A4 G)+1)
A(l,]'1) ke1 () = 2

OpenACC <AnviDIA

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[Jj][i+1] + A[jI[i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j]l[i] - A[3J]1[il));
}
}

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j]l[i] = Anew[]j][i];
}
}

iter++;
OpenACt <Invibia

Iterate until converged

Iterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

Oqgg ACC <ANVIDIA.

OPENACC DEVELOPMENT CYCLE

[- Analyze your code to determine]

most likely places needing
parallelization or optimization.

Analyze

= Parallelize your code by starting
with the most time consuming parts
and check for correctness.

= Optimize your code to improve
observed speed-up from
parallelization.

[

\

Parallelize

N

OpenAcc <ANVIDIA.

PROFILING SEQUENTIAL CODE

Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:
= Total runtime

= Runtime of individual routines calcNext
= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC <AnvIDIA

rrrrr clence, Less Programming

PROFILING SEQUENTIAL CODE

First sight when using NSight Systems

= Profiling a simple, sequential code

= QOur sequential program will on run
on the CPU.

= To view information about how our
code ran, we should right click the
“NVTX” row and select “Show in

Events View”.

OpenAcc <ANVIDIA.

Profiler ove

Events View ~

A\ 2 warnings, 10 messages

| while (error > tol && iter < iter_max) [42.292 s]
¥ 00000 T T

T

PROFILING SEQUENTIAL CODE
CPU Details

= Within the “Events View” tab, we
can see the various parts of our
code, and how long they took to
run.

NVTX ‘%
= We see the “while” loop taking up ——
the majority of our runtime (42.2 s). |

Events View ~

= \We can click the arrow to examine [T e —r
the calls made within this loop. = o |

OpenAcc <@ANVIDIA.

PROFILING SEQUENTIAL CODE
CPU Details

Project Explorer Ll openacc_profile.qdrep X

= We see repeated calls to “calcNext” weswmms s - e e
and “swap” within our while loop.
We will focus on these!

- lv| [24064] a.out -

= We also can see th|S on our » while (error > tol & ter < iter. max) [42.292 5]
. . . calcNext [28.... swap [...| calcNext [28.616 ms] |swap [...| calcNext [28.625 ms] [swap [...| calcNext [28.625 ms]
zoomed in timeline.

2 ds hidd -
q . » ~
= NVTX lets us push ranges onto a e
. . # Name Duration TID Start E
Sta C k A n eW rOW W I t h I n th e N VTX 01 » [initialize [23.857 ms] 23857ms 24064 00204984s
= K] ~ [] while (error > tol && iter 422025 24064 0.0444734s
. . Ma » [] calcNext [37.207 ms] 37.207 ms 24064 0.0444761s
section will be created for each me "l map 120021 mooims s | comesene
Ms > [] caleNext [37.928 ms] 37928 ms 24064 009441135
M 10 » [swap [12.753 ms] 12.763 ms 24064 01323625
n e Ste d ra n g e M 12 + [] calcNext [38.013 ms] 38013 ms 24064 0145123
- M 14 » [swap [12.732 ms] 12.732ms 24064 0.183142s
M1e + [] caleNext [38.258 ms] 382658ms 24064 019588s
Mas » [swap [12.755 ms] 12.756 ms 24064 02341745
M 20 » [] calcNext [37.905 ms] 37905ms 24064 02469355
M 22 + [swap [12.743 ms] 12743 ms 24064 0.284846s
M2 + T raleNavt 128079 mel 20079 me

OpenAcc <ANVIDIA.

PROFILING SEQUENTIAL CODE
CPU Details

Nsight's --stats flag also prints out runtime statistics

We see that initialize and deallocate take almost no runtime

calcNext accounts for 36.2% of total runtime

swap accounts for 13.8% of total runtime

Time(%) Total Time Instances Average Minimum Maximum Range

50.0 42293194393 1 42293194393.0 42293194393 42293194393 while (error > tol && iter < iter_max)
36.2 30601618780 1000 30601618.8 28602296 40445804 calcNext

13.8 11673978245 1000 11673978.2 11322706 13462161 swap

0.0 23810757 1 23810757.0 23810757 23810757. initialize

0.0 1973444 1 1973444.0 1973444 1973444 deallocate

OpenACC <AnviDIA

OPENACC PARALLEL LOOP DIRECTIVE

Oqgg ACC <ANVIDIA.

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

When encountering the
parallel directive, the
compiler will generate

gang gang
1 or more parallel
gangs, which execute
redundantly.
} gang gang

OpenACC <AnvIDIA.

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

loop
loop

#pragma acc parallel
{ gang gang

loop

loop
loop

for(int 1 = 9; 1 < N; i++

{ gang gang

// Do Something

loop
loop

This loop will be

gang gang

} executed redundantly
on each gang

nnnnnnnnnnnnnnnnnnnnnnnnnn

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

for(int 1 = 9; 1 < N; i++

{

an an
// Do Something e e
This means that each gang gang
gang will execute the
openacc anvioa €NtIre 100p

nnnnnnnnnnnnnnnnnnnnnnnnnn

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

?pragma 6E [PEIFEETGE = Use a parallel directive to mark a region of
#pragma acc loop code where you want parallel execution to occur
fog[(il?t; B N5 14+) = This parallel region is marked by curly braces in

} ’ C/C++ or a start and end directive in Fortran

= The loop directive is used to instruct the

compiler to parallelize the iterations of the next

|
!$acc parallel loop to run across the parallel gangs

I$acc loop
doi=1, N
a(i) =

end do

I$acc end parallel

OpenACC <AnvIDIA.

OPENACC PARALLEL LOOP DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of

#pragma acc parallel loop this in a single line of code
fog[(il?t; s e d8 N5 1++) = In this example, the parallel loop directive
- applies to the next loop
= This directive both marks the region for parallel
execution and distributes the iterations of the
loop.
!$a§c parallel loop
doi =14, N = When applied to a loop with a data dependency,
enz((ljé - parallel loop may produce incorrect results

OpenAcc <ANVIDIA.

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

#pragma acc loop

for(int 1 = 9; i < N; i++)

{

// Do Something
} L
The loop directive
informs the compiler

} which loops to

parallelize.
OpenACC <AnvIDIA.

gang gang
gang gang
gang gang

OPENACC PARALLEL LOOP DIRECTIVE

Parallelizing many loops

#pragma acc parallel loop

for(int 1 = 9; 1 < N; i++)
a[i] = ©;

#pragma acc parallel loop

for(int j = 95 j < M; j++)
b[j] = 9;

OpenACC <AnviDIA

To parallelize multiple loop nests, each should
be accompanied by a parallel directive

Each parallel loop nest can have different loop
boundaries and loop optimizations

Each parallel loop nest can be parallelized in a
different way

This is the recommended way to parallelize
multiple loop nests. Attempting to parallelize
multiple loop nests within the same parallel
region may give performance issues or
unexpected results.

PARALLELIZE WITH OPENACC PARALLEL LOOP

while (err > tol && iter < iter max) ({

err=0.0;
#pragma acc parallel loop reduction (max:err) ‘ Parallelize first loop nest,
for(int j = 1; j < n-1; j++) { max reduction required.

for(int i = 1; i < m-1; i++) {

Anew([j][i] = 0.25 * (A[Jj][i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[3J]1[il));
}
}

#pragma acc parallel loop ‘ Parallelize second loop.
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][1i] = Anew[]j][i]’

) We didn’t detail how to
itert+; parallelize the loops, just which
loops to parallelize.

}
OpenAcc <ANVIDIA.

REDUCTION CLAUSE

= The reduction clause takes many values and

“reduces” them to a single value, such as in a
sum or maximum

= Each partial result is calculated in parallel

= A single result is created by combining the
partial results using the specified operation

OpenAcc <ANVIDIA.

for(1 = 0; 1 < size; i++)
for(j = 0; j < size; j++)
for(k = 95 k < size; k++)

c[i][J] += a[i][k] * b[k][]];

for(1 = ; i < size; i++)
for(j = 0; j < size; j++)
double tmp = ;

#pragma acc parallel loop \
reduction(+:tmp)

for(k = 9; k < size; k++)
tmp += a[i][k] * b[k][]];

c[i][j] = tmp;

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)
max Maximum value reduction(max:maximum)
min Minimum value reduction(min:minimum)
& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

| | Logical or reduction(]||:val)

OpenAcc <ANVIDIA.

BUILD AND RUN THE CODE

Oqgg ACC <ANVIDIA.

PGl COMPILER BASICS

pgcc, pgc++ and pgfortran

The command to compile C code is ‘pgcc’

The command to compile C++ code is ‘pgc++’

The command to compile Fortran code is ‘pgfortran’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ pgcc -fast main.c
$ pgc++ -fast main.cpp
$ pgfortran -fast main.F90

OpenAcc <ANVIDIA.

PGl COMPILER BASICS
-Minfo flag

= The -Minfo flag will instruct the compiler to print feedback about the compiled code

= -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

= -Minfo=opt will give information about all code optimizations

= -Minfo=all will give all code feedback, whether positive or negative

$ pgcc —-fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran -fast -Minfo=all main.f90

OpenAcc <ANVIDIA.

PGl COMPILER BASICS
-ta flag

= The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)
= -ta=multicore — Build the code to run across threads on a multicore CPU

= -ta=tesla:managed — Build the code for an NVIDIA (Tesla) GPU and manage the
data movement automatically (more next module)

$ pgcc —fast -Minfo=accel -ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel -ta=tesla:managed main.cpp
$ pgfortran -fast -Minfo=accel -ta=tesla:managed main.f90

OpenAcc <ANVIDIA.

PGl COMPILER BASICS
-Mcuda flag

= The -Mcuda flag is needed when using NVTX regions in our code
= -InvToolsExt — link the NVTX API
= This allows us to use NVTX regions in our code for both CPU and GPU profiling

$ pgcc —-fast -Minfo=accel -ta=tesla:managed -Mcuda -lnvToolsExt main.c
$ pgc++ -fast -Minfo=accel -ta=tesla:managed -Mcuda -lnvToolsExt main.cpp
$ pgfortran -fast -Minfo=accel -ta=tesla:managed -Mcuda -lnvToolsExt main.f90

OpenAcc <ANVIDIA.

BUILDING THE CODE (MULTICORE)

$ pgcc -fast -ta=multicore -Minfo=accel -Mcuda -1lnvToolsExt laplace2d uvm.c
main: -
63, Generating Multicore code
64, #pragma acc loop gang
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction (max:error)
66, Loop is parallelizable
74, Generating Multicore code
75, #pragma acc loop gang
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

OpenAcc <ANVIDIA.

OPENACC SPEED-UP

Speed-up

10.43X

12.00X

10.00X

8.00X

6.00X

Speed-Up

4.00X

2.00X
1.00X

MULTICORE

0.00X
SERIAL
PGl 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

OpenAcc <ANVIDIA.

BUILDING THE CODE (GPU)

$ pgcc -fast -ta=tesla:managed -Minfo=accel -Mcuda -1lnvToolsExt laplace2d uvm.c
main:
63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */
63, Generating implicit copyin(A[:])
Generating implicit copyout (Anew[:])
Generating implicit copy (error)
66, Loop is parallelizable
74, Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector(128) /* threadIdx.x */
74, Generating implicit copyin (Anew[:])
Generating implicit copyout(A[:])
77, Loop is parallelizable

OpenAcc <ANVIDIA.

OPENACC SPEED-UP

Speed-up

40.00X

34.88X

35.00X

30.00X

25.00X

20.00X

Speed-Up

15.00X

10.43X

10.00X

5.00X
1.00X
0.00X '

SERIAL MULTICORE NVIDIA TESLA V100

OpenACC <ANVIDIA, PGl 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

rrrrrrrrrrrrrrrrrrrr amming

CLOSING REMARKS

Oqgg ACC <ANVIDIA.

KEY CONCEPTS

This module we discussed...
= What is OpenACC
= How profile-driven programming helps you write better code

= How to parallelize loops using OpenACC’s parallel loop directive to
Improve time to solution

Next module:

= Managing your data with OpenACC

OpenAcc <ANVIDIA.

OPENACC RESOURCES

FREE
Compilers

@%\ PGl

ommunlt
EDITION

¥ slack

https://www.openacc.org/community#slack

OpenACC

<ANVIDIA.

Resources
https://www.openacc.org/resources
OpenACC

Resources

R Guides & Books
Introduction to OpenACC Quick Guides. Parallel Programming with OpenACC

+ 0penACC Programming and Best Practices Guide
. C 25 API Rotoronce Card

* OpenAcC

Tutorials

Programming Massively Paraliel Processors, Third
Edition: A Hands-on Approach

Compilers and Tools
https://www.openacc.org/tools

OpenACC

Downloads & Tools

Commercial Compilers Open Source Compilers

-
CRANY P G I ;_l] ERUHTRTEIY
Contac rayncformore nformaion, PGl Acclerator Compllerswith Contact Ntionl Supercomputing aece
OpenaCC Dirct

c penCC

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

Success Stories
https://www.openacc.org/success-stories
OpenACC

Success Stories

are sharing thelr results and experlences.

>Watch more OpenACC Vids

Events
https://www.openacc.org/events
OpenACC

Events

The OpenACC C: g ar. Events vary from talks
User: Join our events
Openacc

Hackathons

the full schedule and

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools
https://www.openacc.org/community

