
Module 1 – Introduction to OpenACC

Robert Searles
NVIDIA Corporation

OPENACC ONLINE COURSE

ABOUT THIS COURSE

3 Part Introduction to OpenACC

§ Module 1 – Introduction to OpenACC

§ Module 2 – Data Management with OpenACC

§ Module 3 – Optimizations with OpenACC

Each module will have a corresponding lab

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with

OpenACC.

MODULE 1 OUTLINE
Topics to be covered

§ What is OpenACC and Why Should You Care?

§ Profile-driven Development

§ First Steps with OpenACC

§ Lab 1

§ Where to Get Help

INTRODUCTION TO OPENACC

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

OpenACC

OPENACC IS…

a directives-based parallel
programming model

designed for performance
and portability.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

OpenACC Directives

Manage
Data
Movement

Initiate
Parallel
Execution

Optimize
Loop
Mappings

#pragma acc data copyin(a,b) copyout(c)
{
...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...
}

}
}
...

}

CPU, GPU, Manycore
Performance portable
Interoperable

Single source
Incremental

Single SourceIncremental

OPENACC STRENGTHS

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

§ Rebuild the same code
on multiple
architectures

§ Compiler determines
how to parallelize for
the desired machine

§ Sequential code is
maintained

Low Learning Curve

§ OpenACC is meant to
be easy to use, and
easy to learn

§ Programmer remains
in familiar C, C++, or
Fortran

§ No requirement to
learn low-level details
of the hardware.

Incremental

OPENACC: INCREMENTAL

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop

for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop

for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correctness and

performance

Single Source

OPENACC: SINGLE SOURCE

§ Rebuild the same code
on multiple
architectures

§ Compiler determines
how to parallelize for
the desired machine

§ Sequential code is
maintained

POWER

Sunway

x86 CPU

ARM CPU

AMD GPU

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Low Learning Curve

OPENACC: PROGRAMMABILITY

§ OpenACC is meant to
be easy to use, and
easy to learn

§ Programmer remains
in familiar C, C++, or
Fortran

§ No requirement to
learn low-level details
of the hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU Parallel Hardware

The programmer will
give hints to the

compiler.

The compiler
parallelizes the code.

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC?

160,000+ DOWNLOADS725 TRAINED EXPERTS

5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS ACCELERATED APPS

SLACK MEMBERS

102
326

846

GTC17 GTC18 GTC19

53

100 116

194

GTC16 GTC17 GTC18 GTC19

OPENACC SYNTAX

OPENACC SYNTAX

§ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

§ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

§ “acc” informs the compiler that what will come is an OpenACC directive

§ Directives are commands in OpenACC for altering our code.

§ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code
C/C++
#pragma acc directive clauses
<code>

Fortran
!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION
§ Iteratively converges to correct value (e.g. Temperature), by computing new

values at each point from the average of neighboring points.

§ Common, useful algorithm

§ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴"#$ 𝑖, 𝑗 =
𝐴"(𝑖 − 1, 𝑗) + 𝐴" 𝑖 + 1, 𝑗 + 𝐴" 𝑖, 𝑗 − 1 + 𝐴" 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE

24

while (err > tol && iter < iter_max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Iterate until converged

Iterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OPENACC DEVELOPMENT CYCLE
§ Analyze your code to determine

most likely places needing
parallelization or optimization.

§ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

§ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Profile Your Code

This can include information such as:
§ Total runtime
§ Runtime of individual routines
§ Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

PROFILING SEQUENTIAL CODE
First sight when using NSight Systems

§ Profiling a simple, sequential code

§ Our sequential program will on run
on the CPU.

§ To view information about how our
code ran, we should right click the
“NVTX” row and select “Show in
Events View”.

PROFILING SEQUENTIAL CODE
CPU Details

§ Within the “Events View” tab, we
can see the various parts of our
code, and how long they took to
run.

§ We see the “while” loop taking up
the majority of our runtime (42.2 s).

§ We can click the arrow to examine
the calls made within this loop.

PROFILING SEQUENTIAL CODE
CPU Details

§ We see repeated calls to “calcNext”
and “swap” within our while loop.
We will focus on these!

§ We also can see this on our
zoomed in timeline.

§ NVTX lets us push ranges onto a
stack. A new row within the NVTX
section will be created for each
nested range.

PROFILING SEQUENTIAL CODE
CPU Details

§ Nsight’s --stats flag also prints out runtime statistics

§ We see that initialize and deallocate take almost no runtime

§ calcNext accounts for 36.2% of total runtime

§ swap accounts for 13.8% of total runtime

Time(%) Total Time Instances Average Minimum Maximum Range
------- -------------- ---------- -------------- -------------- -------------- ---
50.0 42293194393 1 42293194393.0 42293194393 42293194393 while (error > tol && iter < iter_max)
36.2 30601618780 1000 30601618.8 28602296 40445804 calcNext
13.8 11673978245 1000 11673978.2 11322706 13462161 swap
0.0 23810757 1 23810757.0 23810757 23810757. initialize
0.0 1973444 1 1973444.0 1973444 1973444 deallocate

OPENACC PARALLEL LOOP DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.
gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang
gang

gang gang

gang

gang

gang

loop

lo
op

lo
op

lo
op

lo
op

lo
op

lo
op

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

§ Use a parallel directive to mark a region of
code where you want parallel execution to occur

§ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

§ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++
#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran
!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing a single loop

§ This pattern is so common that you can do all of
this in a single line of code

§ In this example, the parallel loop directive
applies to the next loop

§ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

§ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++
#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran
!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

gang

gang gang

gang

gang

gang

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

§ To parallelize multiple loop nests, each should
be accompanied by a parallel directive

§ Each parallel loop nest can have different loop
boundaries and loop optimizations

§ Each parallel loop nest can be parallelized in a
different way

§ This is the recommended way to parallelize
multiple loop nests. Attempting to parallelize
multiple loop nests within the same parallel
region may give performance issues or
unexpected results.

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

PARALLELIZE WITH OPENACC PARALLEL LOOP

40

while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Parallelize first loop nest,
max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

REDUCTION CLAUSE
§ The reduction clause takes many values and

“reduces” them to a single value, such as in a
sum or maximum

§ Each partial result is calculated in parallel

§ A single result is created by combining the
partial results using the specified operation

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc parallel loop \
reduction(+:tmp)

for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

REDUCTION CLAUSE OPERATORS
Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

BUILD AND RUN THE CODE

PGI COMPILER BASICS

§ The command to compile C code is ‘pgcc’

§ The command to compile C++ code is ‘pgc++’

§ The command to compile Fortran code is ‘pgfortran’

§ The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

PGI COMPILER BASICS

§ The -Minfo flag will instruct the compiler to print feedback about the compiled code

§ -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

§ -Minfo=opt will give information about all code optimizations

§ -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

PGI COMPILER BASICS

§ The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)

§ -ta=multicore – Build the code to run across threads on a multicore CPU

§ -ta=tesla:managed – Build the code for an NVIDIA (Tesla) GPU and manage the
data movement automatically (more next module)

-ta flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed main.f90

PGI COMPILER BASICS

§ The -Mcuda flag is needed when using NVTX regions in our code

§ -lnvToolsExt – link the NVTX API

§ This allows us to use NVTX regions in our code for both CPU and GPU profiling

-Mcuda flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.f90

BUILDING THE CODE (MULTICORE)

48

$ pgcc -fast -ta=multicore -Minfo=accel –Mcuda -lnvToolsExt laplace2d_uvm.c
main:

63, Generating Multicore code
64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction(max:error)

66, Loop is parallelizable
74, Generating Multicore code

75, #pragma acc loop gang
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

10.43X

0.00X

2.00X

4.00X

6.00X

8.00X

10.00X

12.00X

SERIAL MULTICORE

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

BUILDING THE CODE (GPU)

50

$ pgcc -fast -ta=tesla:managed -Minfo=accel -Mcuda –lnvToolsExt laplace2d_uvm.c
main:

63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])
Generating implicit copyout(Anew[:])
Generating implicit copy(error)

66, Loop is parallelizable
74, Accelerator kernel generated

Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

10.43X

34.88X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE NVIDIA TESLA V100

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

CLOSING REMARKS

KEY CONCEPTS
This module we discussed…

§ What is OpenACC

§ How profile-driven programming helps you write better code

§ How to parallelize loops using OpenACC’s parallel loop directive to
improve time to solution

Next module:

§ Managing your data with OpenACC

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools
https://www.openacc.org/community

