

Oak Ridge Leadership Computing

TITAN

Cray XK7, 18,688 Nodes 16-core AMD Interlagos + K20X 17 PFLOPS, 8.2 MW, #1 TOP500 (2012)

SUMMIT

IBM, 4,600 Nodes 2 Power9 + 6 NVidia Volta 144 PFLOPS, 9.7 MW, #1 TOP500 (2018-19)

FRONTIER

CRAY, 100 Cabinets
1:4 AMD EPYC: Radeon Instinct
1.5 EXAFLOPS
Expected 2021

Scientific discovery and energy security depend on advances in computational capability

Large-Scale Scientific Computing

- Computing for scientific and engineering problems and the science of doing such computations
- Modelling and simulation challenges generate hardware requirements, while hardware constraints spur new methods
- Example: Monte Carlo sampling using GPU-accelerated compute nodes

2019 INCITE Allocations by Category

"If you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman, Simulating Physics with Computers (1982)

What is Quantum Computing?

- Quantum mechanical computation
 - In quantum mechanics, the wave function describes all knowledge about the system
- Quantum computing manipulates the wave function to perform calculations
 - Quantum dynamical control of the Hamiltonian corresponds to computation

$$i\hbar \frac{\partial \Psi(t)}{\partial t} = H(t)\Psi(t)$$

Stodolna et al. PRL 110, 213001 (2013)

Quantum Processing Units

Superconducting chip from IBM

Superconducting chip from Rigetti

Superconducting chip from D-Wave Systems

Ion trap chip from ionQ

Ion trap chip from Honeywell Quantum Solutions

Superconducting chip from Google

Use Cases for Scientific Quantum Computing

Physical Sciences

 Chemistry, Materials, High-Energy Physics, Nuclear Physics, Fusion

Data Sciences

 Artificial Intelligence, Machine Learning, Inference and Mining

Applied Sciences

 Optimization, Engineering, Verification and Validation, Energy Sciences

OLCF Quantum Computing User Program Model

Quantum Computing Resources

D-Wave

 DW special-purpose annealing systems provides 2048 qubits

IBM

• IBM general-purpose gate system provides 53 qubits

Rigetti

 Rigetti general-purpose gate system provides 31 qubits

Quantum Computing User Program

Enable User Access to Quantum Computing Resources

- Merit-based review and user agreements facilitate access to the computing resources.
- The user program is managed by the Oak Ridge Leadership Computing Facility to provide access to quantum computing resources.
- The user program is supported by the Department of Energy, Office of Science, Advanced Scientific Computing Research program office.

Evaluate Scientific Quantum Computing Use Cases

- How do users integrate quantum computing with scientific computing?
- The user program supports the Office of Science QIS research portfolio.
- This includes support for research funded by SC program offices:
 - Advanced Scientific Computing Research
 - Basic Energy Sciences
 - Biological Environmental Research
 - High-energy Physics
 - Fusion Energy Sciences
 - Nuclear Physics

What are the steps to program access?

Project Request

- PI submits a proposal describing merit of idea and why it requires access to QCUP resources
- Online collects essential information
- Email notification of successful submission
- Available at olcf.ornl.gov

Project Review

- OLCF Resource utilization council (RUC) receives proposals.
- RUC reviews proposal for feasibility and merit.
- OLCF review includes export control review, data sensitivity, user agreements

Project Award

- PI is notified that access to the system has been awarded.
- PI is notified of the allocation size, as warranted.
- PI receives unique project ID

User Request

- PI is evaluated as potential system user
- PI authorizes other user account requests
- OLCF vets users for export control, sensitive information, etc.
- OLCF notifies users of account creation.

Quantum Computing User Program Demographics

A Diverse User Base

- 130+ unique users across all systems
- Users are from US national labs, universities, government, and industry
- Users range in quantum computing experience from novice to expert
- Teams consist of quantum computing expertise supported by application interests
- Teams use multiple programming languages and software environments

A Diverse Research Portfolio

- Research teams funded by ASCR, BES, and HEP as well as other program offices
- Most projects focus on proof-of-principle demonstrations and/or new method development
- Some projects focus on application performance and/or benchmarking
- Some projects focus on device characterization, verification, and validation

Quantum Computing User Program Priorities

Enable Research

 Provide a broad spectrum of user access to the best available quantum computing systems

Evaluate Technology

 Monitor the breadth and performance of early quantum computing applications

Engage Community

 Support growth of the quantum computing ecosystems by engaging with users, developers, vendors, providers, and stakeholders

Quantum Computing User Forum

Brings together users to discuss common practices in the development of applications and software for quantum computing systems.

- 08:00 AM 05:00 PM
- ONLINE ONLY

