NVIDIA

GPU PERFORMANCE
ANALYSIS

Bob Crovella, 8/18/2020




AGENDA

» Analysis Driven Optimization

* Understanding Performance Limiters
* Metrics Review

* Memory Bound Analysis

« Compute Bound Analysis

» Future Sessions

* Further Study

« Homework



REVIEW: TOP-LEVEL PERFORMANCE CODING OBJECTIVES

> Make efficient use of the memory subsystem
» Efficient use of global memory (coalesced access)
> Intelligent use of the memory hierarchy
» shared, constant, texture, caches, etc.
> Expose enough parallelism (work) to saturate the machine and hide latency
> Threads/blocks
» Occupancy
> Work per thread

» Execution efficiency

3 <ANVIDIA.



ANALYSIS DRIVEN OPTIMIZATION

/7 N

4 A
Optimize
- Y,
Reflect,
Learn,
. Inspect




ANALYSIS DRIVEN OPTIMIZATION

Yes

Yes




TOP-LEVEL PERFORMANCE BEHAVIOR - LIMITERS

Memory Bound - A code is memory bound, when the measured memory system performance
is at or close to the expected maximum. (saturate memory bus)

Compute Bound - A code is compute bound when the compute instruction throughput is at
or close to the expected maximum.

Latency Bound - One of the indicators for a latency bound code is when neither of the above
are true.

(Analysis-driven) Optimization uses the above determination to direct code refactoring
efforts in the first stage.

Limiting behavior of a code may change over the duration of its execution cycle.

It’s desirable to analyze small sections of code e.g. one kernel at a time

6 <ANVIDIA.



METRICS FOR DETERMINING COMPUTE VS. MEMORY BOUND

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison

Latency metrics:
“sm efficiency”: smsp__cycles_active.avg.pct_of_peak_sustained_elapsed

Memory metrics:

“dram utilization”: dram__throughput.avg.pct_of_peak_sustained_elapsed

“L2 utilization”: lts__t_sectors.avg.pct_of_peak_sustained_elapsed

“shared utilization”:
[1tex__data_pipe_lsu_wavefronts_mem_shared.avg.pct_of_peak_sustained_elapsed

Compute metrics:

“DP Utilization”: smsp__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active

“SP Utilization”: smsp__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active

“HP Utilization”: smsp__inst_executed_pipe_fp16.avg.pct_of_peak_sustained_active

“TC Utilization”: sm__pipe_tensor_op_hmma_cycles_active.avg.pct_of_peak_sustained_active
“Integer Utilization”:
smsp__sass_thread_inst_executed_op_integer_pred_on.avg.pct_of_peak_sustained_active

7 <ANVIDIA.


https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

MEMORY BOUND

> A code can be memory bound when either it is limited by memory bandwidth or latency.
We will lump memory latency bound codes in with the general latency case.

> For a memory bandwidth bound code, we will seek to optimize usage of the various memory
subsystems, taking advantage of the memory hierarchy where possible.

> Optimize use of global memory

> Under data reuse scenarios, make (efficient) use of higher levels of the memory hierarchy, and
optimize these usages (L2 cache, shared memory).

> Take advantage of cache “diversification” using special GPU caches - constant cache, read-only
cache, texture cache/memory, surface memory.

> For a code that is memory bandwidth bound, we can compute the actual throughput vs.
peak theoretical

8 <ANVIDIA.



COMPUTE BOUND

> A code is compute bound when the performance of a particular type of compute
instruction/operation is at or near the limit of the functional unit servicing that
type

> Optimization strategy involves optimizing the use of that functional unit type, as
well as (possibly) seeking to shift the compute load to other types

> For a code that is dominated by a particular type (e.g. single precision floating
point multiply/add) we can compare the actual throughput vs. peak theoretical.

9 <ANVIDIA.



LATENCY BOUND

> A code is latency bound when the GPU cannot keep busy with the
available/exposed parallel work.

> The general strategy for a latency bound code will be to expose more parallel work
> Make sure that you are launching a large number of threads
> Increase the work per thread (e.g. via a loop over input elements)
> Use “vector load” to allow a single thread to process multiple input elements

> Strive for maximum occupancy

10 <ANVIDIA.



A\

v

v

\

A\

WHAT IS OCCUPANCY?

A measure of the actual thread load in an SM, vs. peak theoretical/peak achievable
CUDA includes an occupancy calculator spreadsheet

Higher occupancy is sometimes a path to higher performance

Achievable occupancy is affected by limiters to occupancy

Primary limiters:

> Registers per thread (can be reported by the profiler, or can get at compile time)
> Threads per threadblock

> Shared memory usage

11

<ANVIDIA.



WALK-THRU

> What the code does:

Input Data Result
M vectors >
vector —
IenLgth average T
v
LxL matrix

matrix-vector

multiply 4‘ |

o I

This process is repeated N times, using N sets of input vectors, reusing the matrix, producing N result vectors.

12 <ANVIDIA.



FUTURE SESSIONS

> Cooperative Groups



FURTHER STUDY

Analysis Driven optimization:

» http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

» http://www.nvidia.com/content/GTC-2010/pdfs/2012 GTC2010.pdf

> Google “gtc cuda optimization”

New tools blogs:

» https://developer.nvidia.com/blog/migrating-nvidia-nsight-tools-nvvp-nvprof/

» https://developer.nvidia.com/blog/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/

» https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

14 <ANVIDIA.


http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010.pdf
https://developer.nvidia.com/blog/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://developer.nvidia.com/blog/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw7/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

15 <A NVIDIA.


mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

NVIDIA.




