
CUDA OPTIMIZATION,
PART 2
NVIDIA Corporation

2

OUTLINE

Architecture:

Kepler/Maxwell/Pascal/Volta

Kernel optimizations

Launch configuration

Part 2 (this session):

Global memory throughput

Shared memory access

Most concepts in this
presentation apply to
any language or API

on NVIDIA GPUs

GLOBAL MEMORY
THROUGHPUT

4

MEMORY HIERARCHY REVIEW

Local storage

Each thread has own local storage

Typically registers (managed by the compiler)

Shared memory / L1

Program configurable: typically up to 48KB shared (or 64KB, or 96KB…)

Shared memory is accessible by threads in the same threadblock

Very low latency

Very high throughput: >1 TB/s aggregate

5

MEMORY HIERARCHY REVIEW

L2

All accesses to global memory go through L2, including copies to/from CPU host

Global memory

Accessible by all threads as well as host (CPU)

High latency (hundreds of cycles)

Throughput: up to ~900 GB/s (Volta V100)

6

MEMORY ARCHITECTURE

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU
Multiprocessor

Registers

Shared Memory

Multiprocessor
Registers

Shared Memory

Multiprocessor
Registers

Shared Memory

Constant and Texture
Caches

L1 / L2 Cache

7

MEMORY HIERARCHY REVIEW

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

8

GMEM OPERATIONS

Loads:

Caching

Default mode

Attempts to hit in L1, then L2, then GMEM

Load granularity is 128-byte line

Stores:

Invalidate L1, write-back for L2

9

GMEM OPERATIONS

Loads:

Non-caching

Compile with –Xptxas –dlcm=cg option to nvcc

Attempts to hit in L2, then GMEM

Do not hit in L1, invalidate the line if it’s in L1 already
Load granularity is 32-bytes

We won’t spend much time with non-caching loads in this training session

10

LOAD OPERATION

Memory operations are issued per warp (32 threads)

Just like all other instructions

Operation:

Threads in a warp provide memory addresses

Determine which lines/segments are needed

Request the needed lines/segments

11

CACHING LOAD
Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 1 cache-line

Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

int c = a[idx];

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

12

CACHING LOAD
Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 1 cache-line

Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

int c = a[rand()%warpSize];

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

13

CACHING LOAD
Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within 2 cache-lines

Warp needs 128 bytes

256 bytes move across the bus on misses

Bus utilization: 50%

int c = a[idx-2];

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

14

CACHING LOAD
All threads in a warp request the same 4-byte word

Addresses fall within a single cache-line

Warp needs 4 bytes

128 bytes move across the bus on a miss

Bus utilization: 3.125%

int c = a[40];

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

15

CACHING LOAD
Warp requests 32 scattered 4-byte words

Addresses fall within N cache-lines

Warp needs 128 bytes

N*128 bytes move across the bus on a miss

Bus utilization: 128 / (N*128) (3.125% worst case N=32)

int c = a[rand()];

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

16

NON-CACHING LOAD
Warp requests 32 scattered 4-byte words

Addresses fall within N segments

Warp needs 128 bytes

N*32 bytes move across the bus on a miss

Bus utilization: 128 / (N*32) (12.5% worst case N = 32)

int c = a[rand()]; –Xptxas –dlcm=cg

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

17

GMEM OPTIMIZATION GUIDELINES
Strive for perfect coalescing

(Align starting address - may require padding)

A warp should access within a contiguous region

Have enough concurrent accesses to saturate the bus

Process several elements per thread

Multiple loads get pipelined

Indexing calculations can often be reused

Launch enough threads to maximize throughput

Latency is hidden by switching threads (warps)

Use all the caches!

SHARED MEMORY

19

SHARED MEMORY

Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

Use it to improve global memory access patterns

Organization:

32 banks, 4-byte wide banks

Successive 4-byte words belong to different banks

20

SHARED MEMORY

Performance:

Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor

shared accesses are issued per 32 threads (warp)

serialization: if N threads of 32 access different 4-byte words in the same bank, N accesses are
executed serially

multicast: N threads access the same word in one fetch

Could be different bytes within the same word

21

BANK ADDRESSING EXAMPLES

No Bank Conflicts No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

22

BANK ADDRESSING EXAMPLES

2-way Bank Conflicts 16-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0x16

x16

23

SHARED MEMORY: AVOIDING BANK CONFLICTS
32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

210

31210

31210

warps:
0 1 2 31

Bank 0
Bank 1
…

Bank 31
20 1

31

24

SHARED MEMORY: AVOIDING BANK CONFLICTS
Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31210

31210

31210

warps:
0 1 2 31 padding

Bank 0
Bank 1
…

Bank 31
3120 1

25

SUMMARY

Kernel Launch Configuration:

Launch enough threads per SM to hide latency

Launch enough threadblocks to load the GPU

Global memory:

Maximize throughput (GPU has lots of bandwidth, use it effectively)

Use shared memory when applicable (over 1 TB/s bandwidth)

Use analysis/profiling when optimizing:

“Analysis-driven Optimization” (future session)

26

FUTURE SESSIONS

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups

27

FURTHER STUDY
Optimization in-depth:

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

CUDA Best Practices Guide:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html

28

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw4/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

QUESTIONS?

