<3

NVIDIA

CUDA OPTIMIZATION,
PART 2

NVIDIA Corporation



OUTLINE

» Architecture:

Kepler/Maxwell/Pascal/Volta

> Kernel optimizations

» Launch configuration
> Part 2 (this session):
> Global memory throughput

> Shared memory access

2 <ANVIDIA.



NVIDIA.

GLOBAL MEMORY
THROUGHPUT




MEMORY HIERARCHY REVIEW

> Local storage
> Each thread has own local storage
> Typically registers (managed by the compiler)
> Shared memory / L1
> Program configurable: typically up to 48KB shared (or 64KB, or 96KB...)
> Shared memory is accessible by threads in the same threadblock
> Very low latency

> Very high throughput: >1 TB/s aggregate

4 <ANVIDIA.



MEMORY HIERARCHY REVIEW

» L2

> All accesses to global memory go through L2, including copies to/from CPU host
> Global memory

> Accessible by all threads as well as host (CPU)

> High latency (hundreds of cycles)

> Throughput: up to ~900 GB/s (Volta V100)



MEMORY ARCHITECTURE

Multiprocessor
Multiprocessor
Multiprocessor

Registers
Shared Memory




MEMORY HIERARCHY REVIEW

SM-0 SM-1 SM-N

$ § { $ $

$
m ez i 1 K2 I ECN

Global Memory
7 <ANVIDIA




GMEM OPERATIONS

> Loads:
> Caching
> Default mode
> Attempts to hit in L1, then L2, then GMEM
> Load granularity is 128-byte line
> Stores:

> Invalidate L1, write-back for L2

8 <ANVIDIA.



GMEM OPERATIONS

> Loads:
> Non-caching
> Compile with -Xptxas -dlcm=cg option to nvcc
> Attempts to hit in L2, then GMEM

Do not hit in L1, invalidate the line if it’s in L1 already
» Load granularity is 32-bytes

We won’t spend much time with non-caching loads in this training session

9 <ANVIDIA.



LOAD OPERATION

> Memory operations are issued per warp (32 threads)
> Just like all other instructions

> QOperation:
> Threads in a warp provide memory addresses
> Determine which lines/segments are needed

> Request the needed lines/segments

10 <ANVIDIA.



CACHING LOAD

» Warp requests 32 aligned, consecutive 4-byte words

> Addresses fall within 1 cache-line
> Warp needs 128 bytes
> 128 bytes move across the bus on a miss
> Bus utilization: 100%

> int ¢ = a[idx];
addresses from a warp

LLib o

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

11 <ANVIDIA.



CACHING LOAD

> Warp requests 32 alighed, permuted 4-byte words

> Addresses fall within 1 cache-line
> Warp needs 128 bytes
> 128 bytes move across the bus on a miss
> Bus utilization: 100%

> int ¢ = a[rand()%warpSize];
addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

12 <ANVIDIA.



CACHING LOAD

> Warp requests 32 misaligned, consecutive 4-byte words

> Addresses fall within 2 cache-lines
> Warp needs 128 bytes

> 256 bytes move across the bus on misses
> Bus utilization: 50%

> int c = a[idx-2];
addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

13 <ANVIDIA.



CACHING LOAD

» All threads in a warp request the same 4-byte word

> Addresses fall within a single cache-line
> Warp needs 4 bytes
> 128 bytes move across the bus on a miss
> Bus utilization: 3.125%

> int ¢ = a[40];
addresses from a warp

N ——

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

14 <ANVIDIA.



CACHING LOAD

» Warp requests 32 scattered 4-byte words

> Addresses fall within N cache-lines
> Warp needs 128 bytes
> N*128 bytes move across the bus on a miss

> Bus utilization: 128 / (N*128) (3.125% worst case N=32)

> int ¢ = a[rand()];
addresses from a warp

— 1 _,

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

15 <ANVIDIA.



NON-CACHING LOAD

» Warp requests 32 scattered 4-byte words

> Addresses fall within N segments
> Warp needs 128 bytes

> N*32 bytes move across the bus on a miss
> Bus utilization: 128 / (N*32) (12.5% worst case N = 32)

> int ¢ = a[rand()]; -Xptxas -dlcm=cg
addresses from a warp

L & 1 _,

[T [ T T [ T T ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

16 <ANVIDIA.



GMEM OPTIMIZATION GUIDELINES

> Strive for perfect coalescing
> (Align starting address - may require padding)
> A warp should access within a contiguous region
> Have enough concurrent accesses to saturate the bus

> Process several elements per thread
> Multiple loads get pipelined
> Indexing calculations can often be reused
> Launch enough threads to maximize throughput

> Latency is hidden by switching threads (warps)

> Use all the caches!

17 <ANVIDIA.



NVIDIA

SHARED MEMORY



SHARED MEMORY

> Uses:
> Inter-thread communication within a block
> Cache data to reduce redundant global memory accesses
> Use it to improve global memory access patterns
> QOrganization:
> 32 banks, 4-byte wide banks

> Successive 4-byte words belong to different banks

19 <ANVIDIA.



SHARED MEMORY

> Performance:
> Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor
> shared accesses are issued per 32 threads (warp)

> serialization: if N threads of 32 access different 4-byte words in the same bank, N accesses are
executed serially

» multicast: N threads access the same word in one fetch

> Could be different bytes within the same word

20 <ANVIDIA.



BANK ADDRESSING EXAMPLES

No Bank Conflicts No Bank Conflicts

©) ©)
©) ©)
©) ©)




BANK ADDRESSING EXAMPLES

2-way Bank Conflicts 16-way Bank Conflicts




SHARED MEMORY: AVOIDING BANK CONFLICTS

> 32x32 SMEM array

> Warp accesses a column:

> 32-way bank conflicts (threads in a warp access the same bank)

warps:
31

0 1 2
Bank ¢ 1 EIER
Bank 1 D EAE - O
o DEE

ENEN




SHARED MEMORY: AVOIDING BANK CONFLICTS

> Add a column for padding:
> 32x33 SMEM array
> Warp accesses a column:

» 32 different banks, no bank conflicts

0 1 2
NN

warps:
31 padding

Bank O

pank 1 KRN : EINE

- Bl
HENEN B

Bank 31




v

A\

A\

SUMMARY

>

Global memory:

> Maximize throughput (GPU has lots of bandwidth, use it effectively)
Use shared memory when applicable (over 1 TB/s bandwidth)
Use analysis/profiling when optimizing:

> “Analysis-driven Optimization” (future session)

25

<ANVIDIA.



v

A\

v

v

v

FUTURE SESSIONS

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)
Analysis Driven Optimization

Cooperative Groups

26

<ANVIDIA.



v

v

v

v

FURTHER STUDY

Optimization in-depth:

» http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

» http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-

Analysis.pdf

CUDA Best Practices Guide:

» https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

» https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

27

<ANVIDIA.


http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw4/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

28 <ANVIDIA.


http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

NVIDIA. W
BN 7
[ KN

\A ,‘ "\ ‘i{‘ J

N \)
W

QUESTIONS?



NVIDIA.




