

CUDA OPTIMIZATION, PART 2 NVIDIA Corporation

OUTLINE

Architecture:

Kepler/Maxwell/Pascal/Volta

- Kernel optimizations
 - Launch configuration
- Part 2 (this session):
 - Global memory throughput
 - Shared memory access

Most concepts in this presentation apply to *any* language or API on NVIDIA GPUs

GLOBAL MEMORY THROUGHPUT

MEMORY HIERARCHY REVIEW

- Local storage
 - Each thread has own local storage
 - Typically registers (managed by the compiler)
- Shared memory / L1
 - Program configurable: typically up to 48KB shared (or 64KB, or 96KB...)
 - Shared memory is accessible by threads in the same threadblock
 - Very low latency
 - Very high throughput: >1 TB/s aggregate

MEMORY HIERARCHY REVIEW

► L2

- All accesses to global memory go through L2, including copies to/from CPU host
- Global memory
 - Accessible by all threads as well as host (CPU)
 - High latency (hundreds of cycles)
 - Throughput: up to ~900 GB/s (Volta V100)

MEMORY ARCHITECTURE

MEMORY HIERARCHY REVIEW

GMEM OPERATIONS

- Loads:
 - Caching
 - Default mode
 - Attempts to hit in L1, then L2, then GMEM
 - Load granularity is 128-byte line
- Stores:
 - Invalidate L1, write-back for L2

GMEM OPERATIONS

- Loads:
 - Non-caching
 - Compile with -Xptxas -dlcm=cg option to nvcc
 - Attempts to hit in L2, then GMEM

Do not hit in L1, invalidate the line if it's in L1 already

Load granularity is 32-bytes

We won't spend much time with non-caching loads in this training session

LOAD OPERATION

- Memory operations are issued per warp (32 threads)
 - Just like all other instructions
- Operation:
 - Threads in a warp provide memory addresses
 - Determine which lines/segments are needed
 - Request the needed lines/segments

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%
 - int c = a[rand()%warpSize];

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within 2 cache-lines
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: 50%
 - int c = a[idx-2];

- All threads in a warp request the same 4-byte word
- Addresses fall within a single cache-line
 - Warp needs 4 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 3.125%
 - int c = a[40];

addresses from a warp

- Warp requests 32 scattered 4-byte words
- Addresses fall within N cache-lines
 - Warp needs 128 bytes
 - N*128 bytes move across the bus on a miss
 - Bus utilization: 128 / (N*128) (3.125% worst case N=32)

NON-CACHING LOAD

- Warp requests 32 scattered 4-byte words
- Addresses fall within N segments
 - Warp needs 128 bytes
 - N*32 bytes move across the bus on a miss
 - Bus utilization: 128 / (N*32) (12.5% worst case N = 32)
 - int c = a[rand()]; -Xptxas -dlcm=cg

GMEM OPTIMIZATION GUIDELINES

- Strive for perfect coalescing
 - (Align starting address may require padding)
 - A warp should access within a contiguous region
- Have enough concurrent accesses to saturate the bus
 - Process several elements per thread
 - Multiple loads get pipelined
 - Indexing calculations can often be reused
 - Launch enough threads to maximize throughput
 - Latency is hidden by switching threads (warps)
- Use all the caches!

SHARED MEMORY

SHARED MEMORY

- Uses:
 - Inter-thread communication within a block
 - Cache data to reduce redundant global memory accesses
 - Use it to improve global memory access patterns
- Organization:
 - ► 32 banks, 4-byte wide banks
 - Successive 4-byte words belong to different banks

SHARED MEMORY

- Performance:
 - Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor
 - shared accesses are issued per 32 threads (warp)
 - serialization: if N threads of 32 access different 4-byte words in the same bank, N accesses are executed serially
 - multicast: N threads access the same word in one fetch
 - Could be different bytes within the same word

BANK ADDRESSING EXAMPLES

No Bank Conflicts

No Bank Conflicts

BANK ADDRESSING EXAMPLES

2-way Bank Conflicts

16-way Bank Conflicts

SHARED MEMORY: AVOIDING BANK CONFLICTS

- ► 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

SHARED MEMORY: AVOIDING BANK CONFLICTS

- Add a column for padding:
 - 32x33 SMEM array
- Warp accesses a column:

Bank 0

Bank 1

Bank 31

32 different banks, no bank conflicts

SUMMARY

- Kernel Launch Configuration:
 - Launch enough threads per SM to hide latency
 - Launch enough threadblocks to load the GPU
- Global memory:
 - Maximize throughput (GPU has lots of bandwidth, use it effectively)
- Use shared memory when applicable (over 1 TB/s bandwidth)
- Use analysis/profiling when optimizing:
 - "Analysis-driven Optimization" (future session)

FUTURE SESSIONS

- Atomics, Reductions, Warp Shuffle
- Using Managed Memory
- Concurrency (streams, copy/compute overlap, multi-GPU)
- Analysis Driven Optimization
- Cooperative Groups

FURTHER STUDY

- Optimization in-depth:
 - <u>http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf</u>
- Analysis-Driven Optimization:
 - http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
- CUDA Best Practices Guide:
 - https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
- CUDA Tuning Guides:
 - https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

HOMEWORK

- Log into Summit (ssh <u>username@home.ccs.ornl.gov</u> -> ssh summit)
- Clone GitHub repository:
 - Git clone git@github.com:olcf/cuda-training-series.git
- Follow the instructions in the readme.md file:
 - https://github.com/olcf/cuda-training-series/blob/master/exercises/hw4/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some knowledge of C/C++ programming

