
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Summit Scheduler and Job Launch
Introduction

OLCF New User Training

Chris Fuson

June 03, 2020

2

3

4

5

Summit Parallel Job Execution

Batch System (LSF)

• Batch scheduler, allocates resources

• Similar functionality to PBS/MOAB/SLURM

• Allocates entire nodes

Job Launcher (jsrun)

• Developed by IBM for the Oak Ridge
and Livermore CORAL systems

• Similar functionality to aprun/srun/mpirun

66

LSF Example Batch Script

#!/bin/bash

#BSUB -W 2:00
#BSUB -nnodes 2
#BSUB -P abc007
#BSUB -o example.o%J
#BSUB -J example

hostname
jsrun -n2 -r1 -a1 -c1 hostname

bsub example.lsf
Job <29209> is submitted to default queue <batch>.

2-hour walltime
2 nodes
ABC007 project

Job name

Output file example.o<jobid>

Batch script example

Batch submission

Batch node (batch2)
Compute node (h23n01)

77

Common bsub Options
Option Example Usage Description
-W #BSUB –W 1:00 Requested Walltime

[hours:]minutes

-nnodes #BSUB –nnodes 1024 Number of nodes (CORAL systems)

-P #BSUB –P ABC123 Project to which the job should be charged

-J #BSUB –J MyJobName Name of the job.

If not specified, will be set to ‘Not_Specified’.

-o #BSUB –o jobout.%J File into which job STDOUT should be directed (%J will be
replaced with the job ID number)

If not specified will be set to ‘JobName.%J’

-e #BSUB –e joberr.%J File into which job STDERR should be directed

-w #BSUB –w ended(1234) Place dependency on previously submitted jobID 1234

-N
-B

#BSUB –N
#BSUB -B

Send job report via email once job completes (N) or begins (B)

-alloc_flags #BSUB –alloc_flags gpumps
#BSUB –alloc_flags smt1

Used to request GPU Multi-Process Service (MPS) and to set
SMT (Simultaneous Multithreading) levels.

Setting gpumps enables NVIDIA’s Multi-Process Service, which
allows multiple MPI ranks to simultaneously access a GPU.

*More details and flags can be found in the bsub manpage

88

LSF Interactive Batch Job
• Allows access to compute resources interactively

• Through batch system similar to batch script submission, but returns prompt on
launch node

• Run multiple jsrun with only one queue wait, very useful for testing and
debugging

• Syntax
– Use –Is and the shell to be started

– Most other batch flags valid
– Add batch flags to command line

bsub -Is -P abc007 –nnodes 2 –W 2:00 $SHELL
Job <29507> is submitted to default queue <batch>.
<<Waiting for dispatch ...>>
<<Starting on batch1>>

hostname
batch1

jsrun -n2 -r1 hostname
a01n01
a01n02

Presentation examples
use the following to
allocate resources

99

Common LSF Commands

Function PBS/MOAB SLURM LSF
Submit qsub sbatch/salloc bsub
Monitor Queue showq/qstat squeue bjobs/jobstat
Investigate Job checkjob scontrol/sacct bhist
Alter Queued Job qalter scontrol update bmod

Remove Queued Job qdel scancel bkill

Hold Queued Job qhold scontrol hold bstop

Release Held Job qrls scontrol release bresume

1010

Viewing the Batch Queue with bjobs

• ‘bjobs’
– Will display only your jobs by default if no options given

• ‘bjobs -u all’
– Will show all queued jobs

• ‘bjobs –l jobID’
– Will show details of given jobID

• As with MOAB, jobs can be organized into three high level
categories
– 1) Running 2) Pending Eligible 3) Pending Ineligible

• ‘bjobs –uall –pei’
– Will show pending jobs separated into eligible and ineligible

1111

Viewing the Batch Queue with jobstat
• OLCF developed tool to help view queue

summit-login1 1082> jobstat
--------------------------- Running Jobs: 7 (4158 of 4608 nodes, 90.23%) ---------------------------
JobId Username Project Nodes Remain StartTime JobName
221070 userA CSC100 512 44:22 11/30 11:01:25 run745-A3
221090 userA CSC100 272 1:35:12 11/30 11:52:15 run745-B2
221092 userB CSC006 1 1:06:47 11/30 11:23:50 Not_Specified
221105 userC CSC007 3200 2:59:40 11/30 12:16:43 Not_Specified
221095 userD CSC201 2 1:29:29 11/30 11:46:32 Not_Specified
221088 userE CSC100 170 1:31:06 11/30 11:48:09 20_a_1
221097 userF CSC100 1 1:52:26 11/30 12:09:29 Job3
--- Eligible Jobs: 2 ---
JobId Username Project Nodes Walltime QueueTime Priority JobName
221108 userC CSC007 4200 10:00:00 11/30 12:16:07 520.00 Not_Specified
221101 userC CSC007 1048 6:00:00 11/30 12:12:28 515.00 Not_Specified
--- Blocked Jobs: 4 --
JobId Username Project Nodes Walltime BlockReason
221099 userA CSC100 1048 6:00:00 JOBS limit defined for the user or user group has been reach
221110 userC CSC007 1800 8:00:00 JOBS_PER_SCHED_CYCLE defined for the user or user
221107 userC CSC007 1 45:00 JOBS_PER_SCHED_CYCLE defined for the user or user
221151 userC CSC007 16 3:00:00 JOBS_PER_SCHED_CYCLE defined for the user or user

Running job
limit reached

Eligible job limit
reached

Default Job
Name

12

Summit Queue Policy

Bin Min Nodes Max Nodes Max Walltime
(hrs)

Aging Boost
(days)

1 2,765 4,608 24 15
2 922 2,764 24 10
3 92 921 12 0
4 46 91 6 0
5 1 45 2 0

• Eligible to run limit: 4
• https://docs.olcf.ornl.gov/systems/summit_user_guide.html#scheduling-policy

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

1313

Summit Node

RAM

GPU
(3 x Socket)

Core
(21 x Socket)

Socket
(2 x Node)

Hardware Thread
(4x Core)

*Numbering skips due to core isolation

1414

Hardware Thread Levels

• Each physical core contains 4 hardware threads
• Simultaneous Multithreading (SMT)
• Power9 supports 3 levels: 1, 2, or 4 virtual cores
• SMT level set for each batch job
– #BSUB –alloc_flags smt1
– #BSUB –alloc_flags smt2
– #BSUB –alloc_flags smt4 (default)

• jsrun controls task/thread layout

Core
(21 x Socket)

Hardware Thread
(4x Core)

1515

jsrun Introduction

• Launch job on compute resources
• Similar functionality to srun and mpirun
• Launch nodes

– Non-jsrun commands executed on launch node

1616

Resource Set Introduction

• jsrun format:

• Resource set
– Subgroup of resources within a node

• GPUs, CPUs
– Just cgroups under the covers
– Building blocks of jsrun
– Provides the ability to create subsets of nodes

• Flexibility to add resources based on code’s requirements
– Limitations

• Can span sockets; can not span nodes
• Entire cores; not hyper-thread level
• Homogeneous by default

jsrun [-n #Resource Sets] [tasks, threads, and GPUs w/in each Resource Set] program

1717

Choosing a Resource Set

• Understand how your code expects to interact with the system.
– How many tasks/threads per GPU?
– Does each task expect to see a single GPU? Do multiple tasks expect to share a GPU? Is the code written to

internally manage task to GPU workload based on the number of available cores and GPUs?

• Create resource sets containing the needed GPU to task binding
– Based on how your code expects to interact with the system, you can create resource sets containing the needed

GPU and core resources.
– If a code expects to utilize one GPU per task, a resource set would contain one core and one GPU. If a code expects

to pass work to a single GPU from two tasks, a resource set would contain two cores and one GPU.

• Decide on the number of resource sets needed
– Once you understand tasks, threads, and GPUs in a resource set, you simply need to decide the number of resource

sets needed.

1818

Jsrun Format and Options

Flags
(long)

Flags
(short) Description

--nrs -n Number of resource sets

--rs_per_host -r Number of resource sets per host
(node)

--tasks_per_rs -a Number of MPI tasks/ranks per
resource set

--cpu_per_rs -c Number of CPUs (cores) per
resource set.

--gpu_per_rs -g Number of GPUs per resource set

--bind -b Binding of tasks within a resource
set. Can be none, rs, or packed:#

--latency priority -l
Latency Priority. Controls layout
priorities. Can currently be cpu-cpu
or gpu-cpu. Upper v/s lower case.

--launch_distribution -d
How tasks are distributed between
resource sets. Can be cyclic,
packed, plane.

jsrun [-n #Resource Sets] [tasks, threads, and GPUs w/in each Resource Set] program

*for additional flags see the jsrun man page

19

jsrun examples

• What do you get by
default?
– Almost nothing

jsrun –n1 a.out

1
resource

set

20

jsrun examples

• Explicitly requesting
resources is to your
benefit.
– Don’t rely on defaults.

• How many of these
resource sets can we fit
on a single node?

jsrun –n1 –a1 –c1 –g1

1
resource

set
1

task
1

physical
core

1
GPU

x

21

jsrun examples

• Increase the number of
RS

• Each RS will contain
same number of
specified tasks, cores,
GPUs

jsrun –n6 –a1 –c1 –g1

6
resource

sets
1

task
1

physical
core

1
GPU

x

22

jsrun examples

• Increase cores per RS
to utilize all available
physical cores.

• Still only one task per
RS

jsrun –n6 –a1 –c7 –g1

6
resource

sets
1

task
7

physical
cores

1
GPU

x

23

jsrun examples

• Launch distribution
controls the order of
tasks started across
multiple resource sets

jsrun –n6 –a7 –c7 –g1 -dpacked

6
resource

sets
7

tasks
7

physical
cores

1
GPU

x

assign tasks
sequentially

filling RS
first

24

jsrun examples

• Change the order of
tasks started across
multiple resource sets to
round robin

jsrun –n6 –a7 –c7 –g1 -dcyclic

6
resource

sets
7

tasks
7

physical
cores

1
GPU

x

assign tasks
round robin
across RS

25

jsrun examples (threads)
jsrun –n12 –a1 –c4 –g1 –b packed:4 –d packed

12
resource

sets
1

task
4

physical
cores

1
GPU

bind tasks to
4 cores in

resource set
x

assign tasks
sequentially

filling RS
first

2-node allocation

OMP_NUM_THREADS = 4

rank0’s OMP_PLACES = {0:4},{4:4},{8:4},{12:4}

2626

jsrun Binding Flag

• -b, --bind

• Binding of tasks within a
resource set

• OMP_PLACES, affinity

• Should specify binding to
help prevent unwanted
oversubscription

• Options:
– none

• No binding

– rs
• Bind to cores in resource set
• Not Recommended

– packed:#
• Default: packed:1
• Number of CPUs bound to task

– packed:smt:#
• Hardware threads bound to task

summit-batch1> jsrun –n1 -a1 –c2 ./jsrun_layout | sort
MPI Rank 000 of 001 on HWThread 000 of Node h41n08, OMP_threadID 0 of 2
MPI Rank 000 of 001 on HWThread 000 of Node h41n08, OMP_threadID 1 of 2

summit-batch1> jsrun –n1 -a1 –c2 -bpacked:2 ./jsrun_layout | sort
MPI Rank 000 of 001 on HWThread 000 of Node h41n08, OMP_threadID 0 of 2
MPI Rank 000 of 001 on HWThread 004 of Node h41n08, OMP_threadID 1 of 2

Threads placed
on same core
with default

binding.

Use ‘–b packed:2’
to bind each rank

to 2 cores.

2727

Viewing jsrun Layout
• Execute code within interactive batch job to view jsrun layout

• Lab maintained example code:
– https://docs.olcf.ornl.gov/systems/summit_user_guide.html#hello-jsrun

summit-batch1> jsrun –n2 -a2 –d cyclic ./jsrun_layout | sort
... Warning: more than 1 task/rank assigned to a core
MPI Rank 000 of 004 on HWThread 000 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 001 of 004 on HWThread 004 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 002 of 004 on HWThread 000 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 003 of 004 on HWThread 004 of Node h41n08, OMP_threadID 0 of 1

summit-batch1> jsrun –n2 -a2 –c2 -d cyclic ./jsrun_layout | sort
MPI Rank 000 of 004 on HWThread 000 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 001 of 004 on HWThread 008 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 002 of 004 on HWThread 004 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 003 of 004 on HWThread 012 of Node h41n08, OMP_threadID 0 of 1

summit-batch1> jsrun –n2 -a2 –c2 –d packed ./jsrun_layout | sort
MPI Rank 000 of 004 on HWThread 000 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 001 of 004 on HWThread 004 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 002 of 004 on HWThread 008 of Node h41n08, OMP_threadID 0 of 1
MPI Rank 003 of 004 on HWThread 012 of Node h41n08, OMP_threadID 0 of 1

Without –c multiple
ranks are placed on

single core.

Adding cores to RS
provides a core for

each rank.

Changing distribution
order to packed

changes RS rank
placement.

Notice default rank
placement order cycles

between RS.

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

2828

Viewing jsrun Layout
• js_task_info : binary provided by jsrun developers

• Examples ran with default SMT4

summit-batch1> jsrun -n1 -a4 -c4 -bpacked:1 -dpacked js_task_info | sort
Task 0 (0/4, 0/4) is bound to cpu[s] 0-3 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={0:4}
Task 1 (1/4, 1/4) is bound to cpu[s] 4-7 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={4:4}
Task 2 (2/4, 2/4) is bound to cpu[s] 8-11 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={8:4}
Task 3 (3/4, 3/4) is bound to cpu[s] 12-15 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={12:4}

summit-batch1> jsrun -n1 -a4 -c4 -bpacked:smt:4 -dpacked js_task_info | sort
Task 0 (0/4, 0/4) is bound to cpu[s] 0-3 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={0:4}
Task 1 (1/4, 1/4) is bound to cpu[s] 4-7 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={4:4}
Task 2 (2/4, 2/4) is bound to cpu[s] 8-11 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={8:4}
Task 3 (3/4, 3/4) is bound to cpu[s] 12-15 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={12:4}

summit-batch1> jsrun -n1 -a4 -c4 -bpacked:smt:1 -dpacked js_task_info | sort
Task 0 (0/4, 0/4) is bound to cpu[s] 0 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={0}
Task 1 (1/4, 1/4) is bound to cpu[s] 1 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={1}
Task 2 (2/4, 2/4) is bound to cpu[s] 2 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={2}
Task 3 (3/4, 3/4) is bound to cpu[s] 3 on host a01n18 with OMP_NUM_THREADS=1 and with OMP_PLACES={3}

Default binding
to one physical

core

Binding
packed:smt:4

Binding
packed:smt:1

All tasked
placed on

single physical
core

2929

Viewing jsrun Layout
• Execute tools on compute nodes through jsrun

summit-batch3> jsrun -n1 -g0 sh -c 'nvidia-smi --query-gpu=gpu_name,gpu_bus_id --format=csv'
No devices were found

summit-batch3> jsrun -n1 -g3 sh -c 'nvidia-smi --query-gpu=gpu_name,gpu_bus_id --format=csv'
name, pci.bus_id
Tesla V100-SXM2-16GB, 00000004:04:00.0
Tesla V100-SXM2-16GB, 00000004:05:00.0
Tesla V100-SXM2-16GB, 00000004:06:00.0

summit-batch3> jsrun -n1 -g4 -c42 sh -c 'nvidia-smi --query-gpu=gpu_name,gpu_bus_id --format=csv'
name, pci.bus_id
Tesla V100-SXM2-16GB, 00000004:04:00.0
Tesla V100-SXM2-16GB, 00000004:05:00.0
Tesla V100-SXM2-16GB, 00000035:03:00.0
Tesla V100-SXM2-16GB, 00000035:04:00.0

No visible
GPUs

3 visible GPUs

Bus ID shows
two GPUs per
socket visible

30

Viewing jsrun Layout (jsrunVisualizer)

• Job Step Viewer - https://jobstepviewer.olcf.ornl.gov/
– Generate a graphical view of an application's runtime layout on

Summit.
– Used to create all resource set images in this presentation

$ module load job-step-viewer
$ jsrun -n6 -g1 -c7 -a1
https://jobstepviewer.olcf.ornl.gov/summit/926674-5

1. Load the job-step-viewer module.

2. Test out a jsrun line by itself or run an executable as normal.

3. Visit the provided URL.

https://jobstepviewer.olcf.ornl.gov/

31

Multiple Jsruns Sequentially
#!/bin/bash

#BSUB -W 2:00
#BSUB -nnodes 2
#BSUB -P abc007

cd $MEMBERWORK/abc007

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileA

jsrun –n1 –r1 –a12 –c12 ./post_process fileA fileB

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileB

jsrun –n1 –r1 –a12 –c12 ./post_process fileB fileC

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileC

Walltime should be
long enough to run

all jsruns and
support tasks

Allocated nodes
should be as large

as largest jsrun

All tasks executed
sequentially

jsrun post_process
will not launch until
the previous jsrun
a.out completes

00:25:00

00:05:00

00:30:00

00:05:00

00:25:00

2

.1

2

.1

2

Nodes
Required

Time
Required

01:30:00

Simultaneous
Nodes

Total
Walltime

2

32

Multiple Jsruns Simultaneously
#!/bin/bash

#BSUB -W 1:00
#BSUB -nnodes 6
#BSUB -P abc007

cd $MEMBERWORK/abc007

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileA &

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileB &

jsrun –n12 –r6 –g1 –a2 –c2 ./a.out fileC &

wait

Walltime should be
long enough to run

longest running
jsrun

Allocated nodes
should be as large
as the sum of all

simultaneous
jsruns

Placing jsruns in
background allows

each to run at
same time. Jsrun
will place each on

separate
resources.

UNIX wait ensures script does not
exit before backgrounded work

completes.

Without wait, batch job will exit
before jsruns are complete.

00:25:00

00:30:00

00:25:00

2

2

2

Nodes
Required

Time
Required

00:30:00

Simultaneous
Nodes

Max
Walltime

6

3333

Multiple Simultaneous Job Steps
• jsrun placement managed by IBM’s CSM (Cluster System Management)
• Aware of all jsrun allocations within LSF job; allows multiple per node, multi node, …
• Following example ran on 2-node allocation

summit-batch3> jsrun -n1 -a1 -c1 -g6 -bpacked:1 csh -c "js_task_info; sleep 30" &

Task 0 (0/1, 0/1) is bound to cpu[s] 0-3 on host a01n02

summit-batch3> jsrun -n1 -a1 -c42 -g0 -bpacked:1 csh -c "js_task_info; sleep 30" &

Task 0 (0/1, 0/1) is bound to cpu[s] 0-3 on host a01n01

summit-batch3> jsrun -n1 -a1 -c1 -g1 -bpacked:1 csh -c "js_task_info; sleep 30" &

summit-batch3 1023> jslist
parent cpus gpus exit

ID ID nrs per RS per RS status status
===

17 0 1 1 6 0 Running
18 0 1 42 0 0 Running
19 0 1 1 1 0 Queued
1 0 1 1 3 0 Complete

Requires all
cores on node,

placed on
separate node

Not enough free resources,
waiting on completion of

running step

All GPUs on
node, 1 CPU

jslist command
displays job

steps Note: In a batch job,
backgrounded tasks
require wait command

Questions ?

• Documentation
– docs.olcf.ornl.gov
– Man pages

• jsrun, bsub

• Help/Feedback
– help@olcf.ornl.gov

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

