
Module 3 – Loop Optimizations with OpenACC

Robert Searles
NVIDIA Corporation

OPENACC ONLINE COURSE

ABOUT THIS COURSE

3 Part Introduction to OpenACC

§ Module 1 – Introduction to OpenACC ü

§ Module 2 – Data Management with OpenACC ü

§ Module 3 – Loop Optimizations with OpenACC

Each module will have a corresponding lab

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with

OpenACC.

MODULE 3 OUTLINE
Topics to be covered

§ Gangs, Workers, and Vectors Demystified

§ GPU Profiles

§ Loop Optimizations

§ Module 3 Lab

§ Where to Get Help

MODULES 1 & 2 REVIEW

OPENACC DEVELOPMENT CYCLE
§ Analyze your code to determine

most likely places needing
parallelization or optimization.

§ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

§ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

OpenACC Directives

Manage
Data
Movement

Initiate
Parallel
Execution

Optimize
Loop
Mappings

#pragma acc data copyin(a,b) copyout(c)
{
...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...
}

}
}
...

}

CPU, GPU, Manycore
Performance portable
Interoperable

Single source
Incremental

PARALLELIZE WITH OPENACC PARALLEL LOOP

8

while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Parallelize first loop nest,
max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Copy A to/from the
accelerator only when

needed.

Copy initial condition of
Anew, but not final value

OPENACC SPEED-UP

1.00X

10.43X

34.88X

30.45X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE NVIDIA TESLA V100
(MANAGED)

NVIDIA TESLA V100 (DATA)

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

!
How much work 1 worker
can do is limited by his
speed.

A single worker can only
move so fast.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

!
Even if we increase the
size of his roller, he can
only paint so fast.

We need more workers!

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Multiple workers can do
more work and share
resources, if organized
properly.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

By organizing our workers
into groups (gangs), they
can effectively work together
within a floor.

Groups (gangs) on different
floors can operate
independently.

Since gangs operate
independently, we can use
as many or few as we need.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Even if there’s not enough
gangs for each floor, they
can move to another floor
when ready.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Our painter is like an
OpenACC worker, he can
only do so much.

His roller is like a vector, he
can move faster by covering
more wall at once.

Eventually we need more
workers, which can be
organized into gangs to get
more done.

Workers

Gang

Vector

GPU PROFILES

PROFILING GPU CODE (NSIGHT-SYSTEMS)

§ Nsight-Systems presents far more
information when running on a GPU

§ We can view Kernel Details,
Memory Details, a Timeline, and
even do Analysis of the performance

Using Nsight-Systems to profile GPU code

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

§ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

§ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

§ Kernels: These are our
computational functions. We can
see our calcNext and swap functions

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

§ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

§ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

§ Kernels: These are our
computational functions. We can
see our calcNext and swap functions

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

§ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

§ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

§ Kernels: These are our
computational functions. We can
see our calcNext and swap functions

LOOP OPTIMIZATIONS

OPENACC LOOP DIRECTIVE

§ Mark a single for loop for parallelization

§ Allows the programmer to give additional
information and/or optimizations about the
loop

§ Provides many different ways to describe the
type of parallelism to apply to the loop

§ Must be contained within an OpenACC
compute region (either a kernels or a parallel
region) to parallelize loops

Expressing parallelism

C/C++
#pragma acc loop
for(int i = 0; i < N; i++)
// Do something

Fortran
!$acc loop
do i = 1, N
! Do something

COLLAPSE CLAUSE

§ collapse(N)

§ Combine the next N tightly nested loops

§ Can turn a multidimensional loop nest
into a single-dimension loop

§ This can be extremely useful for
increasing memory locality, as well as
creating larger loops to expose more
parallelism

#pragma acc parallel loop collapse(2)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse(2)

#pragma acc parallel loop collapse(2)
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

COLLAPSE CLAUSE

§ A single loop might not have enough iterations to warrant parallelization

§ Collapsing outer loops gives more scalable (gangs) parallelism

§ Collapsing inner loops gives more fine-grained (vector) parallelism

§ Collapsing all loops gives the compiler total freedom, but may cost data locality

When/Why to use it

COLLAPSE CLAUSE
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) collapse(2) \
copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]));

}
}

#pragma acc parallel loop collapse(2) \
copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Collapse 2 loops into one
for more flexibility in

parallelizing.

OPENACC SPEED-UP

1.15X

1.00X

1.17X

0.90X

0.95X

1.00X

1.05X

1.10X

1.15X

1.20X

NVIDIA TESLA V100 (MANAGED) NVIDIA TESLA V100 (DATA) NVIDIA TESLA V100 (COLLAPSE)

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

TILE CLAUSE

§ tile (x , y , z, ...)

§ Breaks multidimensional loops into
“tiles” or “blocks”

§ Can increase data locality in some
codes

§ Will be able to execute multiple “tiles”
simultaneously

#pragma acc kernels loop tile(32, 32)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile (2 , 2)

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

TILE CLAUSE
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) tile(32,32) \
copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]));

}
}

#pragma acc parallel loop tile(32,32) \
copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Create 32x32 tiles of the
loops to better exploit

data locality.

TILING RESULTS (V100)

The collapse clause often requires an
exhaustive search of options.

For our example code…

• CPU saw no benefit from tiling

• GPU saw anywhere from a 15% loss
of performance to a 25% improvement

CPU
Improvement

GPU
Improvement

Baseline 1.00X 1.00X

4x4 1.00X 0.85X

4x8 1.00X 0.95X

8x4 1.00X 0.99X

8x8 1.00X 0.99X

8x16 1.00X 1.03X

16x8 1.00X 1.09X

16x16 1.00X 1.11X

16x32 1.00X 1.18X

32x16 1.00X 1.22X

32x32 1.00X 1.25X

OPENACC SPEED-UP

1.15X

1.00X

1.17X
1.25X

0.00X

0.20X

0.40X

0.60X

0.80X

1.00X

1.20X

1.40X

NVIDIA TESLA V100
(MANAGED)

NVIDIA TESLA V100 (DATA) NVIDIA TESLA V100
(COLLAPSE)

NVIDIA TESLA V100 (TILE)

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

GANG, WORKER, AND VECTOR CLAUSES
§ The developer can instruct the compiler

which levels of parallelism to use on
given loops by adding clauses:

§ gang – Mark this loop for gang
parallelism

§ worker – Mark this loop for worker
parallelism

§ vector – Mark this loop for vector
parallelism

These can be combined on the same
loop.

#pragma acc parallel loop gang
for(i = 0; i < size; i++)
#pragma acc loop worker
for(j = 0; j < size; j++)
#pragma acc loop vector
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

#pragma acc parallel loop \
collapse(3) gang vector

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

SEQ CLAUSE
§ The seq clause (short for sequential)

will tell the compiler to run the loop
sequentially

§ In the sample code, the compiler will
parallelize the outer loops across the
parallel threads, but each thread will
run the inner-most loop sequentially

§ The compiler may automatically apply
the seq clause to loops as well

#pragma acc parallel loop
for(i = 0; i < size; i++)
#pragma acc loop
for(j = 0; j < size; j++)
#pragma acc loop seq
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

ADJUSTING GANGS, WORKERS, AND
VECTORS

#pragma acc parallel num_gangs(2) \
num_workers(2) vector_length(32)

{
#pragma acc loop gang worker
for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

}

The compiler will choose a number of gangs,
workers, and a vector length for you, but you
can change it with clauses.

§ num_gangs(N) – Generate N gangs for
this parallel region

§ num_workers(M) – Generate M workers
for this parallel region

§ vector_length(Q) – Use a vector length of
Q for this parallel region

COLLAPSE CLAUSE WITH VECTOR LENGTH
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) collapse(2) vector_length(1024) \
copyin(A[0:n*m]) copy(Anew[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j][i]));

}
}

#pragma acc parallel loop collapse(2) vector_length(1024) \
copyin(Anew[0:n*m]) copyout(A[0:n*m])

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

OPENACC SPEED-UP

1.15X

1.00X

1.17X
1.25X 1.23X

0.00X

0.20X

0.40X

0.60X

0.80X

1.00X

1.20X

1.40X

NVIDIA TESLA V100
(MANAGED)

NVIDIA TESLA V100
(DATA)

NVIDIA TESLA V100
(COLLAPSE)

NVIDIA TESLA V100
(TILE)

NVIDIA TESLA V100
(COLLAPSE/VECTOR)

Sp
ee
d-
U
p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

LOOP OPTIMIZATION RULES OF THUMB

§ It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

§ Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

§ It is rare to use a worker loop on NVIDIA GPUs. When the vector length is very
short, a worker loop can increase the parallelism in your gang (thread block).

§ When possible, the vector loop should step through your arrays consecutively
(stride==1)

§ Gangs should come from outer loops, vectors from inner

CLOSING REMARKS

KEY CONCEPTS
In this lab we discussed…

§ Some details that are available to use from a GPU profile

§ Gangs, Workers, and Vectors Demystified

§ Collapse clause

§ Tile clause

§ Gang/Worker/Vector clauses

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools
https://www.openacc.org/community

