
Module 2 – OpenACC Data Management

Robert Searles
NVIDIA Corporation

OPENACC ONLINE COURSE

ABOUT THIS COURSE

3 Part Introduction to OpenACC

§ Module 1 – Introduction to OpenACC ü

§ Module 2 – Data Management with OpenACC

§ Module 3 – Optimizations with OpenACC

Each module will have a corresponding lab

COURSE OBJECTIVE

Enable YOU to accelerate
YOUR applications with

OpenACC.

MODULE 2 OUTLINE
Topics to be covered

§ CPU and GPU Memories

§ CUDA Unified (Managed) Memory

§ OpenACC Data Management

§ Lab 2

MODULE 1 REVIEW

OPENACC DEVELOPMENT CYCLE
§ Analyze your code to determine

most likely places needing
parallelization or optimization.

§ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

§ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

OpenACC Directives

Manage
Data
Movement

Initiate
Parallel
Execution

Optimize
Loop
Mappings

#pragma acc data copyin(a,b) copyout(c)
{
...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...
}

}
}
...

}

CPU, GPU, Manycore
Performance portable
Interoperable

Single source
Incremental

OpenACC Directives

This Module:
Manage
Data
Movement

Last
Module:
Run loops in
parallel

#pragma acc data copyin(a,b) copyout(c)
{
...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...
}

}
}
...

}

CPU, GPU, Manycore
Performance portable
Interoperable

Single source
Incremental

PARALLELIZE WITH OPENACC PARALLEL LOOP

9

while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Parallelize first loop nest,
max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

OPENACC SPEED-UP

1.00X

10.43X

34.88X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE NVIDIA TESLA V100

Sp
ee

d-
U

p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

CPU AND GPU MEMORIES

CPU + GPU
Physical Diagram

§ CPU memory is larger, GPU memory has
more bandwidth

§ CPU and GPU memory are usually separate,
connected by an I/O bus (traditionally PCIe)

§ Any data transferred between the CPU and
GPU will be handled by the I/O Bus

§ The I/O Bus is relatively slow compared to
memory bandwidth

§ The GPU cannot perform computation until the
data is within its memory

High
Capacity
Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

CUDA UNIFIED MEMORY

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as
“managed memory.”

CUDA UNIFIED MEMORY

CPU and GPU memories are
combined into a single, shared pool

CUDA MANAGED MEMORY

§ Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

§ The PGI compiler can utilize CUDA Managed Memory to defer data management

§ This allows the developer to concentrate on parallelism and think about data
movement as an optimization

Usefulness

$ pgcc –fast –ta=tesla:managed –Minfo=accel main.c

$ pgfortran –fast –ta=tesla:managed –Minfo=accel main.f90

MANAGED MEMORY

§ The programmer will almost always be able to
get better performance by manually handling
data transfers

§ Memory allocation/deallocation takes longer
with managed memory

§ Cannot transfer data asynchronously

§ Currently only available from PGI on NVIDIA
GPUs.

Limitations

With Managed Memory

Managed Memory

* Slide Courtesy of NVIDIA

LAST MODULE WE USED UNIFIED MEMORY

Why?

§ Removes reliance on PGI and NVIDIA GPUs

§ Currently the data always arrives “Just Too Late”, let’s do better

Now let’s make our code run without.

BASIC DATA MANAGEMENT

BASIC DATA MANAGEMENT

§ The host is traditionally a CPU

§ The device is some parallel accelerator

§ When our target hardware is multicore, the
host and device are the same, meaning that
their memory is also the same

§ There is no need to explicitly manage data
when using a shared memory accelerator,
such as the multicore target

Between the host and device

Host
Device

Host
Memory Device

Memory

BASIC DATA MANAGEMENT

§ When the target hardware is a GPU data will
usually need to migrate between CPU and
GPU memory

§ Each array used on the GPU must be
allocated on the GPU

§ When data changes on the CPU or GPU the
other must be updated

Between the host and device

High
Capacity
Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

TRY TO BUILD WITHOUT “MANAGED”

pgcc -ta=tesla -Minfo=accel –Mcuda -lnvToolsExt laplace2d.c jacobi.c
laplace2d.c:
PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo
messages): Could not find allocated-variable index for symbol (laplace2d.c: 47)
calcNext:

47, Accelerator kernel generated
Generating Tesla code
48, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)
50, #pragma acc loop vector(128) /* threadIdx.x */

48, Accelerator restriction: size of the GPU copy of Anew,A is unknown
50, Loop is parallelizable

PGC-F-0704-Compilation aborted due to previous errors. (laplace2d.c)
PGC/x86-64 Linux 18.7-0: compilation aborted
jacobi.c:

Change –ta=tesla:managed to remove “managed”

DATA SHAPING

DATA CLAUSES
copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

§ Sometimes the compiler needs help understanding the shape of an array

§ The first number is the start index of the array

§ In C/C++, the second number is how much data is to be transferred

§ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

ARRAY SHAPING (CONT.)
Partial Arrays

copy(array(i*N/4:i*N/4+N/4))

copy(array[i*N/4:N/4]) C/C++

Fortran

Both of these examples copy only ¼ of the full array

OPTIMIZED DATA MOVEMENT
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Data clauses
provide necessary

“shape” to the
arrays.

TRY TO BUILD WITHOUT “MANAGED”

pgcc -ta=tesla -Minfo=accel –Mcuda –lnvToolsExt laplace2d.c jacobi.c
laplace2d.c:
calcNext:

47, Generating copyin(A[:m*n])
Accelerator kernel generated
Generating Tesla code
48, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)
50, #pragma acc loop vector(128) /* threadIdx.x */

47, Generating implicit copy(error)
Generating copy(Anew[:m*n])

50, Loop is parallelizable
swap:

62, Generating copyin(Anew[:m*n])
Generating copyout(A[:m*n])
Accelerator kernel generated
Generating Tesla code
63, #pragma acc loop gang /* blockIdx.x */
65, #pragma acc loop vector(128) /* threadIdx.x */

65, Loop is parallelizable
jacobi.c:

Change –ta=tesla:managed to remove “managed”

OPENACC SPEED-UP SLOWDOWN

1.00X

10.43X

34.88X

0.58X
0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE V100 V100 (DATA CLAUSES)

Sp
ee

d-
U

p

Speed-up

WHAT WENT WRONG?

§ The code now has all of the information necessary to build without managed
memory, but it runs much slower.

§ Profiling tools are here to help!

APPLICATION PROFILE

APPLICATION PROFILE

Data Copies

Kernels

RUNTIME BREAKDOWN

Data Copy H2D Data Copy D2H CalcNext Swap

Nearly all of our
time is spent

moving data to/from
the GPU

OPTIMIZED DATA MOVEMENT
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Currently we’re
copying to/from the
GPU for each loop,

can we reuse it?

OPTIMIZE DATA MOVEMENT

OPENACC DATA DIRECTIVE

§ The data directive defines a lifetime
for data on the device beyond
individual loops

§ During the region data is essentially
“owned by” the accelerator

§ Data clauses express shape and
data movement for the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}
}

Action

Host Memory Device memory

A B C

Allocate A on
device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Copy A to/from the
accelerator only when

needed.

Copy initial condition of
Anew, but not final value

REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c
main:

60, Generating copy(A[:m*n])
Generating copyin(Anew[:m*n])

64, Accelerator kernel generated
Generating Tesla code
64, Generating reduction(max:error)
65, #pragma acc loop gang /* blockIdx.x */
67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable
75, Accelerator kernel generated

Generating Tesla code
76, #pragma acc loop gang /* blockIdx.x */
78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only
happens at our outer

data region.

OPENACC SPEED-UP

1.00X

10.43X

34.88X

30.45X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE V100 V100 (DATA)

Sp
ee

d-
U

p

Speed-up

WHAT WE’VE LEARNED SO FAR

§ CUDA Unified (Managed) Memory is a powerful porting tool

§ GPU programming without managed memory often requires data shaping

§ Moving data at each loop is often inefficient

§ The OpenACC Data region can decouple data movement and computation

DATA SYNCHRONIZATION

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])
#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))
!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*
#pragma acc update self(B[0:N])

The data must exist on
both the CPU and device
for the update directive

to work.

SYNCHRONIZE DATA WITH UPDATE

int* A=(int*) malloc(N*sizeof(int)
#pragma acc data create(A[0:N])
while(timesteps++ < numSteps)
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){

a[i] *= 2;
}

if (timestep % 100) {
#pragma acc update self(A[0:N])
checkpointAToFile(A, N);

}
}

§ Sometimes data changes on the host or
device inside a data region

§ Ending the data region and starting a new
one is expensive

§ Instead, update the data so that the host
and device data are the same

§ Examples: File I/O, Communication, etc.

UNSTRUCTURED DATA DIRECTIVES

UNSTRUCTURED DATA DIRECTIVES

§ Data lifetimes aren’t always neatly
structured.

§ The enter data directive handles device
memory allocation

§ You may use either the create or the
copyin clause for memory allocation

§ The enter data directive is not the start
of a data region, because you may
have multiple enter data directives

Enter Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

UNSTRUCTURED DATA DIRECTIVES

§ The exit data directive handles device
memory deallocation

§ You may use either the delete or the
copyout clause for memory deallocation

§ You should have as many exit data for a
given array as enter data

§ These can exist in different functions

Exit Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

UNSTRUCTURED DATA CLAUSES

Enter data:

copyin (list) Allocates memory on device and copies data from host to device
on enter data.

create (list) Allocates memory on device without data transfer on enter data.

Exit data:

copyout (list) Allocates memory on device and copies data back to the host on
exit data.

delete (list) Deallocates memory on device without data transfer on exit data.

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

#pragma acc exit data copyout(c[0:N]) delete(a,b)

UNSTRUCTURED VS STRUCTURED
With a simple code

#pragma acc enter data copyin(a[0:N],b[0:N]) \
create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N]) \
delete(a,b)

#pragma acc data copyin(a[0:N],b[0:N]) \
copyout(c[0:N])

{
#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Unstructured Structured

§ Can have multiple starting/ending points

§ Can branch across multiple functions

§ Memory exists until explicitly deallocated

§ Must have explicit start/end points

§ Must be within a single function

§ Memory only exists within the data region

C++ STRUCTS/CLASSES
With dynamic data members

class vector {
private:
float *arr;
int n;

public:
vector(int size){
n = size;
arr = new float[n];
#pragma acc enter data copyin(this)
#pragma acc enter data create(arr[0:n])

}
~vector(){
#pragma acc exit data delete(arr)
#pragma acc exit data delete(this)
delete(arr);

}
};

§ C++ Structs/Classes work the same
exact way as they do in C

§ The main difference is that now we
have to account for the implicit “this”
pointer

UNSTRUCTURED DATA DIRECTIVES
Branching across multiple functions
int* allocate_array(int N){

int* ptr = (int *) malloc(N * sizeof(int));
#pragma acc enter data create(ptr[0:N])
return ptr;

}

void deallocate_array(int* ptr){
#pragma acc exit data delete(ptr)
free(ptr);

}

int main(){
int* a = allocate_array(100);
#pragma acc kernels
{

a[0] = 0;
}
deallocate_array(a);

}

§ In this example enter data and exit data are
in different functions

§ This allows the programmer to put device
allocation/deallocation with the matching
host versions

§ This pattern is particularly useful in C++,
where structured scopes may not be
possible.

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools
https://www.openacc.org/community

CLOSING REMARKS

KEY CONCEPTS
In this module we discussed…

§ Differences between CPU, GPU, and Unified Memories

§ OpenACC Array Shaping

§ OpenACC Data Clauses

§ OpenACC Structured Data Region

§ OpenACC Update Directive

§ OpenACC Unstructured Data Directives

Next Module: Loop Optimizations

