
Nsight Compute
OLCF Webinar

Felix Schmitt, Mahen Doshi, Jonathan Vincent

2

Nsight Systems - Analyze application algorithms system-wide
https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/

Nsight Compute - Analyze CUDA kernels

Nsight Graphics - Debug/analyze graphics workloads

Nsight Product Family

Workflow

Compute Graphics

You are
here

Systems

Start here

https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/

3

Nsight Compute

4

Nsight Compute

CUDA Kernel profiler

Targeted metric sections for

various performance aspects

Customizable data collection

and presentation (tables,

charts, …)

UI and Command Line

Python-based rules for guided

analysis (or post-processing)

5

Nsight Compute

Detailed memory workload

analysis chart and tables

6

Nsight Compute

Comparison of results directly

within the tool with

“Baselines”

Supported across kernels,

reports, and GPU architectures

7

Nsight Compute

Source/PTX/SASS

analysis and

correlation

Source metrics per

instruction and

aggregated (e.g. PC

sampling data)

Metric heatmap

8

Nsight Compute

Full command line interface

(CLI) for data collection and

analysis

On your workstation

Support for remote profiling

across machines, platforms

(Linux, Windows, …) in UI and

CLI

9

Nsight Compute on
Summit

10

Loading Module

Use nv-nsight-cu-cli command line interface for data collection in batch environments

Available as part of the CUDA toolkit
$ module load cuda/10.1.243

$ /sw/summit/cuda/10.1.243/nsight-compute/nv-nsight-cu-cli

Or as standalone installation (e.g. newer release than CUDA)
$ module load nsight-compute/2019.5.0

$ /sw/summit/nsight-compute/2019.5.0/nv-nsight-cu-cli

11

Collecting Data

By default, results are printed to stdout

Use --export/-o to save results to a file, use -f to force overwrite
$ nv-nsight-cu-cli -f -o $HOME/my_report <app>

$ my_report.nsight-cuprof-report

Use (env) vars available in your batch script to add report name placeholders
$ nv-nsight-cu-cli -f -o $HOME/my_report_${LSB_JOBID} <app>

$ my_report_951697.nsight-cuprof-report

Full parity with nvprof filename placeholders/file macros in next tool version

Disabling PAMI hooks for Spectrum MPI might be required, depending on your application
$ jsrun … --smpiargs "-disable_gpu_hooks” …

This can be an issue if your application requires
$ jsrun … --smpiargs "-gpu” …

12

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight Compute

node 0

gpu0-3

On a single-node submission, Nsight

Compute can profile all launched

processes

Data for all processes is stored in one

report file

nv-nsight-cu-cli --target-processes all

-o <single-report-name> <app> <args>

13

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight

Compute

node 0
gpu0-1

On multi-node submissions, at most one

tool instance can be used per node

Ensure that instances don’t write to the

same report file

nv-nsight-cu-cli -o

report_$OMPI_COMM_WORLD_RANK <app>

<args>

Nsight

Compute

node 1

gpu2-3

14

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Multiple tool instances on the same node

are currently not supported

This will be fixed in the next version

NC

node 1

rank

1

rank

3

NC NC

15

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Consider profiling only a single rank, e.g. using a

wrapper script

#!/bin/bash

if [["$OMPI_COMM_WORLD_RANK" == "3"]] ; then

/sw/summit/cuda/10.1.243/ nsight-

compute/nv-nsight-cu-cli -o

report_${OMPI_COMM_WORLD_RANK} --target-

processes all $*

else

$*

fi

node 1

rank

1

rank

3

gpu3

16

Retrieving Data

Use the Nsight Compute CLI (nv-nsight-cu-cli) on any node to import and analyze the report (--import)

More common, transfer the report to your local workstation

Reports compress very well, consider tar -czvf before transfer

Reports can be analyzed on any host system (Linux, Windows, Mac) using the local CLI or UI

Analysis in UI is more comprehensive and user-friendly

Analysis in CLI is more easily automated (--csv)

17

Source Analysis

SASS (assembly) is always available embedded into the report

CUDA-C (Source) and PTX availability depends on compilation flags

Use -lineinfo to include source/SASS correlation data in the binary

cmake/gmxManageNvccConfig.cmake:201

macro(GMX_SET_CUDA_NVCC_FLAGS)

set(CUDA_NVCC_FLAGS "${GMX_CUDA_NVCC_FLAGS};${CUDA_NVCC_FLAGS};-lineinfo")

endmacro()

Source is not embedded in the report, need local access to the source file to resolve in the UI

Comparing different iterations (e.g. optimizations) of the same source file can be difficult

Improved in next version to respect file properties

Compiler optimizations can prevent exact source/SASS correlation

18

Source Analysis

No -lineinfo -lineinfo, unresolved -lineinfo, resolved

19

Transitioning from
nvprof to Nsight

Compute

20

nvprof Transition

Check the nvprof (and nvvp) transition guides in the documentation and our blogs

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#nvvp-guide

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

Differences Missing Features (in progress)

New metric names and many more metrics

https://docs.nvidia.com/nsight-

compute/NsightComputeCli/index.html#nvprof-

metric-comparison

Cache flush and clock control enabled by default

for deterministic data collection

Customizable

Application replay

No NVLink metrics

No trace - use Nsight Systems

No MPS support

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#nvvp-guide
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://developer.nvidia.com/nsight-systems

21

GROMACS 2020
pme spread/gather

Old Version

22

spline_and_spread: Old Version

23

spline_and_spread: Old Version

Memory units more utilized than SM (Compute), but overall utilization is low

Nsight Compute hints that this is a latency issue, recommends further sections to check

We will still go through other sections for training purposes

Live

24

spline_and_spread: Old Version

Highest utilized pipeline is LSU (Load Store Unit), indicating high load of memory load/store operations

25

spline_and_spread: Old Version

Memory chart shows that stores are much more common in this kernel,

transferring ~10x as much data as reads

Since bandwidth is not saturated, it’s likely frequent operations

26

spline_and_spread: Old Version

We have many active warps available, but most of them are not eligible

(and hence not issued) on average

The next section (Warp State Statistics) can indicate which stall reasons cause this

27

spline_and_spread: Old Version

Most important stall reason (by far) is LG (local/global) Throttle

This indicates extremely frequent memory instructions, according to the guided analysis rule

28

spline_and_spread: Old Version

The samples locations of those stalls can be looked up on the Source page

Live

29

spline_and_spread: Old Version

Disabling global memory writes to store temporary data (for the gather kernel)

could reduce this latency issue

This implies that the gather kernel has to re-compute this data

30

gather: Old Version (overview)

31

gather: Old Version

More balances compute/memory utilization, but also likely latency bound

32

gather: Old Version

Reads temporary spline_and_spread kernel data from global memory

Therefore, much more load operations and data transfered in that direction

33

gather: Old Version

Long Scoreboard stalls cause most wasted cycles

These indicate waiting on local or global memory

34

GROMACS 2020
pme spread/gather

New Version

35

Code Changes

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2

%9C%93&type=sbs

Two new template arguments added to spread/gather kernels

Optimal kernel selected based on input data size

Disabled temp data storage in global memory for this analysis

pme_spline_and_spread_kernel pme_gather_kernel

writeSplinesToGlobal

control if we should write spline data to

global memory

useOrderThreadsPerAtom*

control if we should use order or

order*order threads per atom

readGlobal

control if we should read spline values

from global memory

useOrderThreadsPerAtom*

control if we should use order threads per

atom (order*order used if false)

* not activated

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2%9C%93&type=sbs

36

spline_and_spread: New Version

37

spline_and_spread: New Version

Overall performance improvement is ~15% (fewer cycles)

Highest contributor appears to be the 54% reduced GPU DRAM throughput (SOL FB)

Live

38

spline_and_spread: New Version

Compute Workload Analysis shows slightly reduced usage of the load-store units pipeline in exchange

for increased utilization of arithmetic pipelines (ALU, FMA)

39

spline_and_spread: New Version

Reduced global store requests and data transfers to device memory

40

spline_and_spread: New Version

The eligible and issued warps/scheduler improved slightly (but are still quite low)

41

spline_and_spread: New Version

The improvement is due to reduced LG (local/global) Throttle stalls

(since we have fewer writes to memory)

Could be further reduced in a follow-up optimization

42

gather: New Version

43

gather: New Version

Performance decreased slightly compared with “unoptimized” version

The other individual sections allow us to identify what has changed in detail

44

gather: New Version

Recomputing instead of reading from global memory shows reduced cycles/inst for Long Scoreboard

stalls...

...which translates to improved eligible and issued warps per scheduler

45

gather: New Version

While the kernel executes instructions more efficiently now (higher IPC)...

...it also executes a lot more instructions in total (to re-compute values instead of loading them)

46

gather: Source Analysis

On the collapsed Source page, we can quickly identify where the new instructions originate

Old

New

47

New Version Summary

Overall, combined performance improved by ~10%

Use CSV export from CLI or UI to further analyze data in e.g. Excel

48

Customize Data Collection
and Analysis

49

Customize Sections

Identifier: "SpeedOfLight"

DisplayName: "GPU Speed Of Light"

Description: "High-level overview of ..."

Order: 10

Sets {

Identifier: "default"

}

Sets {

Identifier: "full"

}

Header {

Metrics {

Label: "SOL SM"

Name: "sm__throughput.avg.

pct_of_peak_sustained_elapsed"

}

Metrics {

Label: "Duration"

Name: "gpu__time_duration.sum"

}

Metrics {

Label: "SOL Memory"

Name: "gpu__compute_memory_throughput.avg.

pct_of_peak_sustained_elapsed"

}

Metrics {

Label: "Elapsed Cycles"

Name: "gpc__cycles_elapsed.max"

}

...

Metrics collection

Metric presentation

Tables

Charts

Source page correlation

Details page ordering

Section set association

50

Customize Rules

import NvRules

import math

def get_identifier():

return "SOLBottleneck"

def get_section_identifier():

return "SpeedOfLight"

def apply(handle):

ctx = NvRules.get_context(handle)

action = ctx.range_by_idx(0).action_by_idx(0)

fe = ctx.frontend()

num_waves =

action.metric_by_name("launch__waves_per_multiprocessor")

.as_double()

smSolPct = action.metric_by_name("sm__throughput.avg

.pct_of_peak_sustained_elapsed").as_double()

memSolPct =

action.metric_by_name("gpu__compute_memory_throughput.avg

.pct_of_peak_sustained_elapsed").as_double()

balanced_threshold = 10

latency_bound_threshold = 60

no_bound_threshold = 80

waves_threshold = 1

...

Python rules accessing collected data

Available in UI and CLI

Performance analysis guidance

By NVIDIA

By your own experts

Allow users better understanding of recommendations

In next version: dynamic report navigation

51

Conclusion

52

Known Issues/Outlook

https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues

Outlook for next version

Improved multi-process/MPI support

Parity with nvprof report name placeholders (process ID, env var, running number)

Better kernel name demangler

Improved memory workload analysis tables

Dynamic report navigation

Uncoalesced memory rules

53

Conclusion

Nsight Compute enables detailed kernel analysis

Rules give guidance on optimization opportunities and help metric understanding

Limit sections/metrics to what is required when overhead is a concern

Still requires level of hardware understanding to fully utilize the tool - pay attention to rule results

54

THANK YOU!

Download https://developer.nvidia.com/nsight-compute (can we newer than toolkit version)

Documentation https://docs.nvidia.com/nsight-compute (and local with the tool)

Forums https://devtalk.nvidia.com

Further Training Blue Waters Seminar https://bluewaters.ncsa.illinois.edu/webinars/petascale-

computing/nsight-compute

GTC 2019

https://developer.nvidia.com/gtc/2019/video/S9345

Blog posts

https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute
http://devtalk.nvidia.com
https://bluewaters.ncsa.illinois.edu/webinars/petascale-computing/nsight-compute
https://developer.nvidia.com/gtc/2019/video/S9345
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

