<ANVIDIA. *

Nsight Compute
OLCF Webinar

Felix Schmitt, Mahen Doshi, Jonathan Vincent
L]

©

Nsight Product Family

Workflow

Nsight Systems - Analyze application algorithms system-wide
https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/ ®) Start here

Nsight Compute - Analyze CUDA kernels

Nsight Graphics - Debug/analyze graphics workloads
You are

here

Compute Graphics

2 ANVIDIA.

https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/

Nsight Compute

Nsight Compute

@ NVIDIA Nsight Compute

File Connecton Debug Profile Tools Window Help

&) Connect

D old_2_fusion_on_softmax.nsight-cuprof-report * X

Page: Details ~ Process: Al ~ Launch: 0 -64291 - softmax_compute_kernel ~ AddBaselne ~ = Apply Rules Copy as Image

Current 64291 - softmax_compute_kernel (1966 Time: 15.65usecond Cydes: 16,235 Regs: 28 GPU: Tesla V100-SXM2-16GB SM Frequency: 1.04 cyde/nsecond CC: 7.0 Process: [944] python3.5

¥ GPU Speed Of Light 4\ SOL Chart

High-evel overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with respect to the theoretical maximum.
45.88 | puration [usecond]
43.42 | Elapsed

5! SM Activ
1

5. [
3.66 | SM Frequency [cycle/n

.42 | Memory Frequency [

GPU utilization

Memory [%]

0.0 X 50.0
Speed Of Light [%]

Recommendations

Warning] This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memory bandwidth below
g g 9

A Bottleneck ¢ 0o ek typically indicate latency issues, Look at "Scheduler Statistics” and *Warp State Statistics™ for potential reasons,

» Compute Workload Analysis (o)
Detailed analysis of the compute resources of the streaming multiprocessors (SM), induding the achieved instructions per dock (IPC) and the utiization of each available pipeline. Pipelines with very high utiization might limit the overal
performance.

Executed Ipc Elapsed [inst/cycle]

Executed Ipc Active [inst/cycle]

Issued Ipc Active [inst/cycle]

CUDA Kernel profiler

Targeted metric sections for
various performance aspects

Customizable data collection
and presentation (tables,
charts, ...)

Ul and Command Line

Python-based rules for guided
analysis (or post-processing)

Nsight Compute

~ Memory Workload Analysis Al

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication

.
bandwidth between those units (Max Banduwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit. D et a-l l e d m e m O ry WO rk l O a d

memory Throughput [Gbyte/second] 318.88 | Mem Busy [X]
L1 Hit Rate [%] 26.75 | Max Bandwidth [%]

analysis chart and tables

Memory Chart

24.58 K Inst 18.43 K Req

6.14KReqg

12.25KReq

System Memory

43.01K Inst

36.85 KReq 384,38 k8

Unified Cache L2 Cache

—_—
46.75 % 3.56 MB 94.03 %
0.00 Inst. 0.00Req

=
5
=
]
=
g
=
&
a

0.00 Inst 0-00REq

0.00Req

110,59 K Inst 65.29KReq
Shared Memory

49.15KReq

Shared Memory

Instructions Requests % Peak Bank Conflicts
Shared Load 61,440 65,289 6.39 EX
Shared Store 48,152 49,152 4.96 0
Shared Atomic 0 = =
Total 110,592 114,40 11.55 3,698

First-Level (Unified) Cache
Instructions 5M->TEX Requests % Peak Hit Rate TEX->L2 Requests % Peak L2->TEX Returns % Peak

Global Load Cached 18,432 18432 ¢ 66.65

Global Load Uncached = - >
Vil e Farbad 13 700 13 398

12,300

Current 64291 - softmax_compute_kernel (196

Baseline 2 54456 - sofmax_compute_kernel (195...

SOL SM [%]
SOL Memory [%]
SOL TEX [%]
SOL L2 [%]
SOL FB [%]

Time:

Time:

Nsight Compute

15.65usecond Cycles: 15,235 Regs: 28 GPU: Tesla V100-SXM2-15G8 SM Frequency: 1.04 cyde/nsecond

CC: 7.0 Process: [944] python3.5 @&

15.78 usecond Cycles: 15760 Regs: 28 GPU: Tesla V100-SXM2-16GE SM Frequency: 997.26 cydefusecond CC 7.0 Process: [344] python3.5

45.88 (-2.95%) | buration [usecond]
43,42 (-2.93%) | Elapsed Cycles [cycle]

55.37 (+2.35%) | 5M Active Cycles [cycle]

13.66 (-3.82%) | SM Freguency [cycle/nsecond]
43,42 (-2.93%) | Memory Frequency [cycle/usecond]

GPU Utilization

15.565 (-8.821%)
16,235 (+3.81%)
2,110.38 (-2.25%)
1.84 (+3.24%)
701,94 (+3.69%)

Memory [%]

()

50.0
Speed Of Light [%]

Recommendations

A Bottleneck [Warning] This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memery bandwidth below
60.0% of peak typically indicate latency issues. Look at *Scheduler Statistics”™ and “Warp State Statistics” for potential reasons.

} Compute Workload Analysis

Detailed analysis of the compute resources of the streaming multiprocessors (SM), induding the achieved instructions per dodk (IPC) and the utilization of each avaiable pipeline. Pipelines with very high utiization might limit the overall

performance.

Executed Ipc Elapsed [inst/cycle]
Executed Ipc active [inst/cycle]
Issued Ipc Active [inst/cycle]

= Memory Workload Analysis

1.83 .91%) | sM Busy [%]
2.44 .29%) | Issue Slots Busy [¥]
2.45 L26%) | -

61.39 (+2.26%)
61.39 (+2.28%)

Al

Detailed analysis of the memory resources of the GPLI. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication
bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memary unit.

Memory Throughput [Ghyte/second]
L1 Hit Rate [%]
L2 Hit Rate [%]

24.58 K Inst.
(+0.00%)

312.89 (+8.65%) | Mem Busy [%]
46,89 (+8.31%) | Max Bandwidth [%]
94.87 (+2.83%) | Mem Pipes Busy [X]

Memory Chart

18.43K Reg
(+0.00%)

6.14K Req
(+0.00%)

41,38 (-2.26%)
43,42 (-2.93%)
41.08 (-2.91%)

Comparison of results directly
within the tool with
“Baselines”

Supported across kernels,
reports, and GPU architectures

Nsight Compute

softmarcinl.h] _ZN5mimetZopSmxnet_op22softmax_compute_kernelILi7ENS1_1 isoftmax_fwdELbOERi2EN7mshadow-halfshalf_tES6_EEVPT4_PTS i

Instructions Executed Sampling Data (Mot Issued) - SO u rce / PTX / SAS S
: analysis and
correlation

a

Source Sampling Data (al) = Source Sampling Data (All} Instructions Execute

4 BSYNC BO 2
_global (DType *in, OType *out, index_t m NOP
Shape<ndim> sshape, Shape<ndimx BAR.

temperature) { ISETP.GT.AND

[<< ¥_bits; BSSY B1,

__shared__ AType smem[x_s 1; ISETP.GT.AND

index_t sa = stridefaxis]; ISETP.GT.AND

index_t base = (blockIdx.x, sshape, stride); ISETP.GT.AND

index_t x = threadTdx.x; .U Re, [

s [

il

E

3
35
36
37
38
39
48
1

Source metrics per
instruction and
aggregated (e.g. PC
sampling data)

(smem[x]);
(index_t i = x; i « M; i += x_size) {

smem[x] = ::max(smem[x], negate ? -in[base + i*sa] : in[base + i*sa

ERBERBERERREEREE NN

E

Total Sample Count: 111
b O Barrier: 43 (38.7%) G L
Mio Throttle: 21 (18.9%)
Not Selected: 8 (7.
(smen[x]); Selected: 7 (6.3%)
Short Scarehoard: 16 (14,
Wait: 16 (14.

cuda: : Reduce1Dered: :maximum, x_bits>({smem);
ISETP.GT.AND

s

Metric heatmap

X; Lem; i+=x_size) {
val = negate ? -in[base + i*sa]:in[base + i*sa]; s [
ISETP.GT.AND

s [

pex(((val - smax) /

B

(index_t i
val = negate ? -in[base + i*sa] : in[base + i®sa];
out[base + i*sa] = ((val - smax)/ <DType> (temperat

.QLLAH-_“.L“J‘_N&L“r&l".&&‘“_&i“ﬂ_&“&"

BORMONNENNRERERERNRNRRENENRNEREN RS

" ! !u
® oL o 2 oo o6l o Els

JeREEREE

==PROF== Disconnected from process 8792
] CuBlackscholes.exe@l27.8.8.1
GPUBlackScholesCallPut(int, float*,
Section: GPU Speed Of Light
Metric Name

float*, float*, float*, float*),

Metric Unit Minimum Maximum
6.884859 b6.884859
78.191358 768.191358
751146 .6060068 751146.0666800
7365 1.287365
91358 78.191358
583.456600 83.456000
24 A88198 24 488196
751121 .66860668 751121.066660
69.836838 b9.830838
28.449435 26 .449435

dram__frequency

fbpa sol pct

gpc__elapsed_cycles_max
gpc__ frequency 1.2
sol_pct % 78

usecond

gpu__compute_memory_
gpu__time duration
ltc__sol_pct
sm__elapsed _cycles_avg
sm__sol_pct

tex sol pct

, float, float*, float*, f 2019-Aug-12 14:44:58, Context

Memory Frequency
SOL FB

Elapsed C

SM Frequ

Du r“at:ion
soL L2

npute and Memor To reduce runtime,

o both =omputat10n and memo
Check both the lompute Workload Analysis™ and

" Memory Workload Analysis™ report sections.

Block
Average

6.884859
78.191358
751148 . 600080
1.287365
78.191358

583 .4560808

24 4881906
751121 . 600860
69.826830
28.449435

1, Stream 7

ic must be reduced.

Size 256,

Full command line interface
(CLI) for data collection and
analysis

On your workstation

Support for remote profiling
across machines, platforms
(Linux, Windows, ...) in Ul and
CLI

NVIDIA

Nsight Compute on
Summit

Loading Module

Use nv-nsight-cu-cli command line interface for data collection in batch environments

Available as part of the CUDA toolkit
$ module load cuda/10.1.243
$ /sw/summit/cuda/10.1.243/nsight-compute/nv-nsight-cu-cli

Or as standalone installation (e.g. newer release than CUDA)
$ module load nsight-compute/2019.5.0
$ /sw/summit/nsight-compute/2019.5.0/nv-nsight-cu-cli

10 4 NVIDIA.

Collecting Data

By default, results are printed to stdout

Use --export/-o to save results to a file, use -f to force overwrite
$ nv-nsight-cu-cli -f -o $SHOME/my report <app>
$ my report.nsight-cuprof-report

Use (env) vars available in your batch script to add report name placeholders
$ nv-nsight-cu-cli -f -o $SHOME/my report ${LSB JOBID} <app>
$ my report 951697.nsight-cuprof-report

Full parity with nvprof filename placeholders/file macros in next tool version

Disabling PAMI hooks for Spectrum MPI might be required, depending on your application

$ Jjsrun .. —-smpiargs "-disable gpu hooks” ..

This can be an issue if your application requires
$ jsrun .. ——smpiargs "-gpu” ..

11 ANVIDIA.

Multi-Process Profiling

Nsight Compute

IIIIHHHHH!III\IIIIHHIH!!III
GPU GPU GPU GPU
0 1 2 3

On a single-node submission, Nsight
Compute can profile all launched
processes

Data for all processes is stored in one
report file

nv-nsight-cu-cli --target-processes all
-0 <single-report-name> <app> <args>

12 ANVIDIA.

Multi-Process Profiling

On multi-node submissions, at most one
tool instance can be used per node
jsrun
Ensure that instances don’t write to the
Nsight Nsight
Compute Compute
GPU | GPU] GPU | GPU

0 1 2 3

nv-nsight-cu-cli -o
report S$OMPI COMM WORLD RANK <app>
<args>

13

ANVIDIA.

Multi-Process Profiling

Multiple tool instances on the same node
are currently not supported

This will be fixed in the next version

14 ANVIDIA.

Multi-Process Profiling

Consider profiling only a single rank, e.g. using a

. wrapper script
jsrun PP P
#!/bin/bash
node O node 1 if [["S$OMPI COMM WORLD RANK" == "3"]] ; then
/sw/summit/cuda/10.1.243/ nsight-
compute/nv-nsight-cu-cli -o

report ${OMPI COMM WORLD RANK} --target-
processes all $*

else
rank § rank | rank § rank -
0] 1 2 3 £
GPU GPU GPU GPU
0] 1 2 3

15 A NVIDIA.

Retrieving Data

Use the Nsight Compute CLI (nv-nsight-cu-cli) on any node to import and analyze the report (--import)

More common, transfer the report to your local workstation
Reports compress very well, consider tar -czvf before transfer

Reports can be analyzed on any host system (Linux, Windows, Mac) using the local CLI or Ul

Analysis in Ul is more comprehensive and user-friendly
Analysis in CLI is more easily automated (--csv)

16 ANVIDIA.

Source Analysis

SASS (assembly) is always available embedded into the report
CUDA-C (Source) and PTX availability depends on compilation flags
Use -lineinfo to include source/SASS correlation data in the binary

cmake/gmxManageNvccConfig.cmake:201
macro (GMX SET CUDA NVCC FLAGS)

set (CUDA_NVCC_FLAGS "${GMX CUDA NVCC FLAGS};${CUDA NVCC FLAGS};-lineinfo")
endmacro ()

Source is not embedded in the report, need local access to the source file to resolve in the Ul

Comparing different iterations (e.g. optimizations) of the same source file can be difficult
Improved in next version to respect file properties

Compiler optimizations can prevent exact source/SASS correlation

17

ANVIDIA.

No -lineinfo

Page: 'Source ~ Process: Al ~ | Launch: - pme_spli

Current 6263 -pme_spli... Time: 66,50 usecond Cycles: 83.100 Regs:

View: [SASS

_Z28pme_spline_and_spread_kemnellLi4ELb1ELb1ELb1ELbIELb1ELLOEEV22PmeG)
Instructions Executed

Address Source
6606206, MOV R1, cloxe][6x28]
6000200.. SHFL.IDX
6806200. SR
8906200, SR
0000200. HAD
0000200, SHF.L.U32
900200, ISETP.GE.AND
0000200,
0606206, SR
900200,
0000200..
2 6000266.
6000206.. IMAD R16, R7,
6006200 ISETP.GT.AND
0900200,
0000200,
0600200,
8900200,
606206 ISETP.GT.AND
000206, SHF.L.U32
1 6606206, MoV
™AD

*

000200,

Source Analysis

-lineinfo, unresolved

Page: [Source =/ Process: [All = Launch: - pme_spline_and_spread_kernel ~ | | Add Baseline v/ |Apply Rules

Current 6263 - pme_splin... Time: 66,24 usecond Cycles: 83.249 Regs: 28 GPU: Tesla V100-5XM2-16GB SM Frequency: 1,26 cycle/nsecond CC: 7.0

View: |Source and SASS ~

pme_calculate_splines.cuh
Instructions Executed Resolve

Source Live Registers Sampling Data (A}
pme_calculate_splines.cuh:

pme_spread.cu:
cuda_kernel_utils.cuh:

cuda_device_runtime_api.h:

+
'
!
'
|
|
|

sm_20_atomic_functions.hpp:

texture_indirect_functions.h:
!

_Z28pme_spline_and_spread_kemelILI4ELbIELb1ELbIELb1ELbIELI

Instructions Executed

Address Source

©000208. oV

9000200. SHFL.IDX
SR
SR
IMAD RS, RS,
SHF.L.U32 RO,
ISETP.GE.AND

PV

SR
SR
SR
HAD
HAD

oV
THAD .WIDE

MAD RE, RS, 0
@!P1 IMAD.WIDE RS, R8, R9, c[ex6][ex1fe
SHF.R.532.HI
[R15+
NOP

-lineinfo, resolved

Page: [Source +| Process: [All = Launch: - pme_spline_and_spread_kernel = | | Add Baseline |~ [Apply Rules

Current 6263 - pme_splin... Time: 66,24 usecond Cycles: 83.249 Regs: 26 GPU: Tesla V100-5XM2-16GB SM Frequency: 1,26 cyclejnsecond €C: 7.
View: |Source and SASS

pme_spread.cu _228pme_spline_and_spread_kernellLi4ELb1ELbIELbIELbIELbIE

Instructions Executed

Source Live Registers = Instructions Executed
float3 atomX;

atonCharge; Address| Source

MoV

blockIndex blockIdx.y * griddi
atomIndex0ffset = blockIndex * atomsF

R

threadLocalld
(threadIdx.z * (blockDim.x * blockDim

const int warpIndex = threadlocalld / warp_size

atonWarpIndex = threadIde.z % atomsPi

®

atonIndextocal = warpIndex * atomsPer

LEA R11,
IMAD. WIDE
ISETP.GT.AND
SHF.L.U32
LEA.HI

atonIndexGlobal = atomIndexdffset + =

+ (should only happen for billions of input at
s

(atonIndex0ffset >= kernelParams.atoms. nAtor

(c_useAtomDataPrefetch) POrrer™y

18 <A NVIDIA

Transitioning from
nvprof to Nsight
Compute

nvprof Transition

Check the nvprof (and nvvp) transition guides in the documentation and our blogs
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#nvvp-guide
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

Differences Missing Features (in progress)
New metric names and many more metrics Application replay
https://docs.nvidia.com/nsight-

compute/NsightComputeCli/index.html#nvprof- No NVLink metrics

metric-comparison

No trace - use Nsight Systems

Cache flush and clock control enabled by default
for deterministic data collection No MPS support

Customizable

20 <A NVIDIA.

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#nvvp-guide
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://developer.nvidia.com/nsight-systems

GROMACS 2020
pme spread/gather
Old Version

spline_and_spread: Old Version

Memory units more utilized than SM (Compute), but overall utilization is low
Nsight Compute hints that this is a latency issue, recommends further sections to check
We will still go through other sections for training purposes

= GPU Speed Of Light A

SOL SM [%] 20,33 | Duration [usecond]

SOL Memory [%] 49,04 | Elapsed Cycles [cycle]

SOL TEX [%] 39,73 | SM Active Cycles [cycle]

SOL L2 [%] 49,04 | SM Frequency [cycle/nsecond]
SOL FB [%] 17,55 |Memory Fregquency [cycle/usecond]

GPU Utilization

SOL Chart

SM [%]

[]
| |

Memory [%] |
| | | |
0.0 10,0 20,0 30,0 4UI,O 50,0

Speed Of Light [6]

Recommendations

100,0

memory bandwidth below 60.0% of peak typically indicate latency issues. Look at “Scheduler Statistics’ and "Warp State Statistics” for potential reasons.

A Bottleneck [Warning] This kernel exhibits low compute throughput and memery bandwidth utilization relative to the peak performance of this device. Achieved compute throughput andfor

23

<A NVIDIA.

spline_and_spread: Old Version

Highest utilized pipeline is LSU (Load Store Unit), indicating high load of memory load/store operations

Pipe Utilization

LSU[
L
sm__inst_executed_pipe_lsu.avg.pct_of_peak_sustained_active
38 # of warp instructions executed by Isu pipe

ADU

TEX

XU

FP16

FP64

Tensor (FP)

0.0 . 10,0
Utilization [%]

24 <A NVIDIA

spline_and_spread: Old Version

Memory chart shows that stores are much more common in this kernel,
transferring ~10x as much data as reads

Since bandwidth is not saturated, it’s likely frequent operations
Memory Chart

321.00 K Inst 9.00 K Req

312.00 K Req

0.00 Inst HEDRER

System Memory

0.00 Re
q 750.00 KB L2 Cache

e .
9.89 MB * 96.99%

48.00 K Inst 96.00 K Req
Texture

0.00 Inst HEDRET

Device Memory

Surface

0.00 Reqg

513.00 K Inst 353.36 K Req

177.02 K Req

25 <A NVIDIA

spline_and_spread: Old Version

We have many active warps available, but most of them are not eligible
(and hence not issued) on average
The next section (Warp State Statistics) can indicate which stall reasons cause this

« Scheduler Statistics A

Active Warps Per Scheduler [warp] 13,81 | Instructions Per Active Issue Slot [inst/cycle]
Eligible Warps Per Scheduler [warp] 8,86 | No Eligible [%]

Issued Warp Per Scheduler 8,22 | One or More Eligible [%]

Warps Per Scheduler

Theoretical Warps Per Scheduler

Active Warps Per Scheduler

Eligible Warps Per Scheduler

Issued Warp Per Scheduler

0.0 8,0
Recommendations

[Warning] Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler only issues an instruction every 4.6 cycles. This might
leave hardware resources underutilized and may lead to less optimal performance. Out of the maximum of 16 warps per scheduler, this kernel allocates an average of

A Issue Slot Utilization 13.81 active warps per scheduler, but only an average of 0.86 warps were eligible per cycle. Eligible warps are the subset of active warps that are ready to issue their
next instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot remains unused. To increase the number of eligible warps
either increase the number of active warps or reduce the time the active warps are stalled.

spline_and_spread: Old Version

Most important stall reason (by far) is LG (local/global) Throttle
This indicates extremely frequent memory instructions, according to the guided analysis rule

Warp State (All Cycles)
I

Stall LG Throttle

Stall Barrier

Stall MIO Throttle

Stall Long Scoreboard

Stall Not Selected

Stall Drain

Stall Short Scoreboard

Selected

Warp States

I
stail waic [N

.

=

]

=

Stall Math Pipe Throttle

0,0 - 20,0
Cycles per Instruction

Recommendations

arning] On average each warp of this kernel spends 32.3 cycles being stalled waiting for the local/global instruction queue to be not full. This represents abou

[w 10)} f this k | ds 32.3 cycles b talled waiting for the local/glob tructi to b t full. Thi ts about

A cPI stall 'LG Throttle' 50.9% of the total average of 63.4 cycles between issuing two instructions. Typically this stall occurs only when executing local or global memory instructions
extremely frequently. If applicable, consider combining multiple lower-width memory operations into fewer wider memaory operations and try interleaving memory

operations and math instructions.

27 <A NVIDIA

The samples locations of those stalls can be looked up on the Source page

Page: Source = Process: All ~ Launch: - pme_spline_and_spread_kernel = | Add Baseline ~ Apply Rules
[current 6263 - pme_spline_and_spread_... Time: 66,24 usecond Cycles: 83.249 Regs: 28 GPU: Tesla V100-SXM2-16GB SM Frequency: 1,26 cycle/nsecond CC: 7.§

pme_calculate_splinescuh ~ B stall Ig
View: Source and SASS ~

Source Sampling Data (All)

pme_spread.cu _728pme _spline_and_spread_kernelILi4ELb1ELb1ELb1ELb1ELb1ELbOEEVE 197 sm_fractCoords [sharedMemoryIndex] = t - tInt;
TR rTeE Tt) 198 tableIndex += tInt;

199 assert (tInt >= 0);
= # source Sampling Dat = Instructions Executed 200 assert(tInt < c_pmeNeighborUnitcellCount * n);
Select All Address Source 201
Unselect All 0000200... MOV R1, clexe][ex28] 202 // TODO have shared table for both paramete

e 0000201 SHFL.IDX PT, RZ Z, RZ 203 // TODO compare texture/LDG performance
ckIdx.y * gridDim.x + bl - - o
0086201 S2R CTAID.Y 204 sm_fractCoords [sharedMemoryIndex] +=

v # ckIndex * atomsPerBlock; ~ . —
0000200.. AID. > 205 fetchFromParamLookupTable (kernelParans.
666020 X 206 kernelParams

Live Registers ggzgig ?:E"r;lgng:;)Pp-.FT . i : 207 sm_gridlineIndices[sharedMemoryIndex] =
0 0
Sampling Data (All) 280020, e 0 » € 208 fetchFromParamLookupTable (kernelParams

v Source

im.x * blockpim.y)) + (t
Sampling Data (Not Issued) 1ld probably be obtained 808026 D oar e 209 kernelParams
Instructions Executed alld / warp size; 5000261 — if (writeGlobal)

predicated-On Thread Instructions Executed 000020 3 ¥ 211 {

000020 7 4 > 212 gm_gridlineIndices[atomIndex0Offset * DIV +
dIdx.z % atomsPerWarp; S = e -
Memory Access Operation ed memory */ 0000206...] 213 sm_gridlineIndices [sharedMemoryInc
60800200,
080020 IADD3 R6, 215
MOV R7,
IMAD.WIDE R6 R7, cl
LDG.E.SYS R12, [R6]
ISETP.GT.AND P1, PT X
SHF.L.U32 RS, RO Xz 219 const int chargeCheck = pme_gpu_check_atom _charge(a

Memory Address Space

Memory Access Size Index * atomsPerWarp + a
ory */
T atomIndexGloba atomIndex0ffset + atomIndex!

217 /* B-spline calculation */
/* Early return for fully empty blocks at the end
* (should only happen for billions of input atoms)
‘*" MoV Ro i 220 if (chargeCheck)
if (atomIndex0Offset »= kernelParams.atoms.nAtoms) ! _
{ 3 IMAD Ra, RS,
- IMAD.WIDE RZ, R,

’ .R.S32.HI RI11, RZ,
} o
/* Charges, required for both spline and spread */ . L
if (c_useAtomDataPrefetch)

Dispatch Stall: 1 (0.4%)

Lg Throttle: 224 (79.4%)
Math Pipe Throttle: 1 (0.4%)
Mio Throttle: 43 (15.2%)

Not Selected: 12 (4.3%)
Selected: 1 (0.4%)

28

4 NVIDIA.

spline_and_spread: Old Version

Disabling global memory writes to store temporary data (for the gather kernel)
could reduce this latency issue
This implies that the gather kernel has to re-compute this data

pme_calculate_splines.cuh v B8 stall_lg

Source Sampling Data (All) stall_Ig
197 sm_fractCoords[sharedMemoryIndex] = t - tInt; 0
198 tableIndex += tInt; 0
199 (tInt >= 0);

200 (tInt < c_pmeNeighborUnitcellCount * n);

202

204 sm_fractCoords [sharedMemoryIndex] +=
205 (kernelParams.(
206 kernelParams.
sm_gridlineIndices[sharedMemoryIndex] =
(kernelParams.(

oS g

(writeGlobal)

OO0 0000000000

gm_gridlineIndices[atomIndex0ffset * DIM + s

sm_gridlineIndices [sharedMemoryInde> Total Sample Count

Dispatch Stall: 1 (0
Lg Throttle: 224 (

Mio Throttle: 43 (15.2%
Not Selected: 12 (4.3%)
Selected: 1 (0.4%)
chargeCheck = 6

(chargeCheck) 29 <A NVIDIA

gather: Old Version (overview)

gather: Old Version

More balances compute/memory utilization, but also likely latency bound

GPU Utilization

SM [%:]

Memory [%]

0,0 50,0
Speed Of Light [%]

Recommendations

[Warning] This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput andfor

A Bottleneck memory bandwidth below 60.0% of peak typically indicate latency issues. Look at “Scheduler Statistics™ and “Warp State Statistics™ for potential reasons.

31 <A NVIDIA

gather: Old Version

Reads temporary spline_and_spread kernel data from global memory
Therefore, much more load operations and data transfered in that direction

Memory Chart

150.00 K Inst 144.00KReqg

Global

6.00 K Req

0.00 Req

System Memory

0.00 Inst

so0Re o= 16.98 M8 L2 Cache

Cache +

46.63 % 562.50 KB T 69.07 %

0.00 Inst 0.00 Req
Texture

Device Memory

0.00 Inst 0.00 Req

Surface

0.00 Req

468.00 K Inst 396.95 K Req

90.60 K Req

32

<A NVIDIA

gather: Old Version

Long Scoreboard stalls cause most wasted cycles
These indicate waiting on local or global memory

Warp States

Warp State (All Cycles)

Stall Long Scoreboard [:

Stall Barrier

Stall Not Selected

Stall Wait

Selected

Stall Short Scoreboard

Stall Math Pipe Throttle

Stall No Instruction

Stall MIO Throttle

Stall Dispatch Stall

Stall IMC Miss

Current
Stall Long Scoreboard 8,18
Stall Barrier 2,62
Stall Not Selected 2,46

Stall Wait 2,04
Selected 1,00
Stall Short Scoreboard 0,99
Stall Math Pipe Throttle 0.88

Stall No Instruction 0.82
Stall MIO Throttle 0,79
Stall Dispatch Stall 0,31
Stall IMC Miss 0,20

Stall Drain 0,04
Stall Misc 0,04
Stall LG Throttle 0,01
Stall Tex Throttle 0,00

Stall Membar 0,00
Stall Sleeping 0,00

33

<A NVIDIA

GROMACS 2020
pme spread/gather
New Version

Code Changes

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2
%9C%93&type=sbs

Two new template arguments added to spread/gather kernels
Optimal kernel selected based on input data size
Disabled temp data storage in global memory for this analysis

pme_spline_and_spread_kernel pme_gather_kernel
writeSplinesToGlobal readGlobal

control if we should write spline data to control if we should read spline values
global memory from global memory
useOrderThreadsPerAtom* useOrderThreadsPerAtom*

control if we should use order or control if we should use order threads per
order*order threads per atom atom (order*order used if false)

* not activated

35 ANVIDIA.

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2%9C%93&type=sbs

spline_and_spread: New Version

Overall performance improvement is ~15% (fewer cycles)
Highest contributor appears to be the 54% reduced GPU DRAM throughput (SOL FB)

[Current 62... Time: 56,38 usecond Cycles: 69.516 Regs: 20 GPU: Tesla V100-5XM2-16GB SM Frequency: 1,23 cycle/nsecond €C: 7.0 Process: [133280] gmx mpl & &
unoptimized 62... Time: 66,24 usecond Cycles: 83.249 Regs: 28 GPU: Tesla V100-SXM2-16GB SM Frequency: 1,26 cycle/nsecond €C: 7.0 Process: [17712] gmx_mpi

= GPU Speed Of Light A Al

High-level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utiliz
theoretical maximum.

SOL SM [%] 21,65 (+6,51%) | Duration [usecond]

SOL Memory [%I] 44,82 (-8,59%) [Elapsed Cycles [cycle]

SOL TEX [%] 37,02 (-6,82%) [SM Active Cycles [cyclel

SOL L2 [%] 44,82 (-8,59%) | SM Frequency [cycle/nsecond]

SOL FB [%] 7,99 (-54,46%) | Memory Frequency [cycle/usecond]

GPU Utilization

=
0

o
d
[==]
[==]
[==]

~ @
=~ w3 L
Ln
!
w g

[
Lo
" WD

B L =] o

00 D

]
]
Ln
I

SM [%]

Memory [%]

50,0
Speed Of Light [36]

4 NVIDIA.

spline_and_spread: New Version

Compute Workload Analysis shows slightly reduced usage of the load-store units pipeline in exchange
for increased utilization of arithmetic pipelines (ALU, FMA)

« Compute Workload Analysis o

Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each available pipeline. Pipelines with
very high utilization might limit the overall performance.

Executed Ipc Elapsed [inst/cycle] 9,86 (+6,45%) | SM Busy [%] 23,22 (+7,32%)
Executed Ipc Active [inst/cycle] 9,92 (+7,26%) | Issue Slots Busy [%] 23,22 (+7,32%)
Issued Ipc Active [inst/cyclel 0,93 (+7,32%) | - -

Pipe Utilization

Lsu

——
:I
—
—

FP16

FP64

Tensor (FP)

0.0 10,0
Utilization [%]

38 <A NVIDIA

spline_and_spread: New Version

Reduced global store requests and data transfers to device memory

~ Memory Workload Analysis

All

M

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy),
exhausting the available communication bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed
chart of the memory units. Detailed tables with data for each memory unit

Memory Throughput [Gbyte/second]
L1 Hit Rate [%]
L2 Hit Rate [%]

105.00 K Inst
(-67,29%)
Global

0.00 Inst
(+0,00%)

48.00 K Inst
(+0,00%)
Texture

0.00 Inst
(+0.00%)
Surface

513.00 K Inst
(+0.00%)

67,56 (-55,30%) |Mem Busy [%]
20,78 (-37,56%) |Max Bandwidth [%]
96,06 (-8,96%) | Mem Pipes Busy [%]

Memory Chart

9.00 KReq
(+0.00%)

96.00 K Regq

(-69,23%)
0.00 Reg
(+0.00%)

750.00 KB
(0%00%59) li':;g\fg (+0.00%) L2 Cache
+0,00% | Uiy |

96.00 K Req 2070 % oo
(+0,00%) L (-100,00%)

0.00 Req
+0,00%
! el (-75,95%)

0.00 Reg
(+0.00%)
347.69 K Req
(-1.61%)
Shared
Memory
177.00 K Req
(-0,01%)

=
=]
=
a
=
a
W
8
@

Device Memory

31,15
44,82
15,12

(+9,92%)
(-8,59%)
(-4,69%)

spline_and_spread: New Version

The eligible and issued warps/scheduler improved slightly (but are still quite low)

Active Warps Per Scheduler [warpl 13,74 (-0,49%) | Instructions Per Active Issue Slot [inst/cyclel
Eligible Warps Per Scheduler [warpl 1,01 (+18,15%) |No Eligible [%]
Issued Warp Per Scheduler 0,24 (+8,06%) | One or More Eligible [%]

Warps Per Scheduler

1 (+8,00%)
76,47 (-2,24%)
23,53 (+8,06%)

Theoretical Warps Per Scheduler

Active Warps Per Scheduler

Eligible Warps Per Scheduler El

Issued Warp Per Scheduler 3

0.0 8.0
Recommendations

[Warning] Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler only issues an instruction every 4.2 cycles. This
might leave hardware resources underutilized and may lead to less optimal performance. Out of the maximum of 16 warps per scheduler, this kernel

A Issue Slot Utilization allocates an average of 13.74 active warps per scheduler, but only an average of 1.01 warps were eligible per cycle. Eligible warps are the subset of active
warps that are ready to issue their next instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot remains unused.

To increase the number of eligible warps either increase the number of active warps or reduce the time the active warps are stalled.

40 <A NVIDIA

spline_and_spread: New Version

The improvement is due to reduced LG (local/global) Throttle stalls
(since we have fewer writes to memory)
Could be further reduced in a follow-up optimization

~ Warp State Statistics A\
Warp Cycles Per Issued Instruction 58,41 (-7,92%) [Avg. Active Threads Per Warp
Warp Cycles Per Issue Active 58,41 (-7,92%) |Avg. Not Predicated Off Threads Per Warp

Warp Cycles Per Executed Instruction [cycle] 58,85 (-7,86%) |-
Warp State (All Cycles)

stall LG Throttle [

Stall MIO Throttle

Stall Barrier

Stall Long Scoreboard

Stall Not Selected

Stall Drain

Stall Tex Throttle

Stall Short Scoreboard ;l
Stall Wait]
Stall Math Pipe Throttle [P

0.0 20,0
Cycles per Instruction <4 NVIDIA

Warp States

gather: New Version

Performance decreased slightly compared with “unoptimized” version
The other individual sections allow us to identify what has changed in detail

Page: Details * Process: All = Launch: 1- 6294 -pme_gather kernel = Add Baseline = Apply Rules Copy as Image
Current 62... Time: 28,35 usecond Cycles: 33.206 Regs: 28 GPU: Tesla V100-5XM2-16GE SM Frequency: 1,16 cycle/nsecond €C: 7.0 Process: [133280] gmx_mpi (@ ©
[unoptimized 62.. Time: 23,36 usecond Cycles: 29.646 Regs: 28 GPU: Tesla V100-5XM2-16GB SM Frequency: 1,26 cycle/nsecond C€C: 7.0 Process: [17712] gmx_mpi

~ GPU Speed Of Light All - D
High-level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with respect to the
theoretical maximum.

SOL SM [%] 67,82 (+33,40%) | Duration [usecond] 28,35 (+21,37%)
SOL Memory [%] 60,90 (+14,08%) | Elapsed Cycles [cyclel 33.206 (+12,01%)
SOL TEX [%] 67,41 (+18,05%) | SM Active Cycles [cycle] 29.802,21 (+15,86%)
SOL L2 [%] 21,95 (-31,45%) [SM Frequency [cycle/nsecond] 1,16 (-7,89%)
SOL FB [%] 14,27 (-69,44%) | Memory Frequency [cycle/usecond] 791,76 (-7,78%)

GPU Utilization

|]
SM [%]

Memory [%]

50,0 60,0
Speed Of Light [%]

NVIDIA

gather: New Version

Recomputing instead of reading from global memory shows reduced cycles/inst for Long Scoreboard
stalls...
...which translates to improved eligible and issued warps per scheduler

Active Warps Per Scheduler [warp] 13,23 (+14,72%) | Instructions Per Active Issue Slot [inst/cycle]
Eligible Warps Per Scheduler [warpl 3,77 (+111,61%) No Eligible [%]
Issued Warp Per Scheduler 8,76 (+33,46%) One or More Eligible [%]

Warps Per Scheduler

Theoretical Warps Per Scheduler

Active Warps Per Scheduler

Eligible Warps Per Scheduler

Issued Warp Per Scheduler

0,0

44

<A NVIDIA

gather: New Version

While the kernel executes instructions more efficiently now (higher IPC)...

» Compute Workload Analysis
Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each available pipeline. Pipelines with
very high utilization might limit the overall performance.

Executed Ipc Elapsed [inst/cycle]
Executed Ipc Active [inst/cyclel
Issued Ipc Active [inst/cycle]

SM Busy [%]

Issue Slots Busy [%]

5,0
5,0

...it also executes a lot more instructions in total (to re-compute values instead of loading them)

» Instruction Statistics O

Statistics of the executed low-level assembly instructions (SASS). The instruction mix provides insight into the types and frequency of the executed instructions. A narrow mix of instruction types

implies a dependency on few instruction pipelines, while others remain unused. Using multiple pipelines allows hiding latencies and enables parallel execution. Note that 'Instructions/Opcode’ and
'Executed Instructions' are measured differently and can diverge if cycles are spent in system calls.

Executed Instructions [inst]
Issued Instructions [inst]

7.1084.000 (+48,93%) Avg. Executed Instructions Per Scheduler [instl

22.200 (+48,93%)
7.160.121 (+49,89%) Avg. Issued Instructions Per Scheduler [inst]

22.375,38 (+49,09%)

45 <A NVIDIA

gather: Source Analysis

On the collapsed Source page, we can quickly identify where the new instructions originate

ol

pme_calculate_splines.cuh = Instructions Executed -

Source sampling Data (All) Sampling Data (Mot Issued) Instructions Executed Predicated-On Thread Instructions Executed
pme_calculate_splines.cuh B 3
pme_gather.cu | 074](363 4.434.000) [115.680.000)
! cuda kernel utils.cuh ;] a
! cuda device runtime api.h ;] 1]
! sm_30 intrinsics.hpp ;] 1]
! texture indirect functions. ;] 3]

pme _calculate splines.cuh = Instructions Executed -

Source Sampling Data (All) Sampling Data (Mot Issuec) Instructions Executed Predicated-On Thread Instructions Executed
1 pme_calculate_splines.cuh T 14.78{.0060)
2 pme_gather.cu | T48|(4.488.0600) | 113.640.000)
! cuda_kernel_utils.cuh b
! cuda_device runtime_api.h]
! sm_30 intrinsics.hpp]
! texture indirect functions. a

46 <A NVIDIA

New Version Summary

Overall, combined performance improved by ~10%
Use CSV export from CLI or Ul to further analyze data in e.g. Excel

Function Name Dema Proce: Device [Cycles Trvrlal =0OL Memory [%] SOL SM [% Function Name Demanc Proce: Device Cycles Trvrlal SOL Memory [%] SOL SM [%)]
pme spline and spread kernel voi. [17.. Tesla. 83.249 49,04 20,33 spline and spread void .. [13.. Tesl. 69.516 44,82 21,65
pme gather kernel voi. [17. Tesla.. 29.646 53,3 50,84 gather kernel void .. [13. Tesl. 33.206 60,90 67,82
pme spline and spread kernel voi. [17.. Tesla.. B3.23b 49,06 20,32 spline and spread void .. [13. Tesl. .90y 45,18 21,84
pme gather kernel voi. [17. Tesla. 29.890 53,01 50,37 gather kernel void .. [13. Tesl. .497 60,29 67,15
pme spline and spread kernel voi. [17.. Tesla. 3.624 48,80 20,23 spline and spread void .. [13.. Tesl.. .516 45,44 21,97
pme gather kernel voi. [17. Tesla. 29.051 54,58 51,86 gather kernel void .. [13. Tesl. .459 60, 44 67,31
pme spline and spread kernel voi. [17. Tesla.. 3.617 48,80 20,23 spline and spread void .. [13. Tesl. .197 45,00 21,75
pme gather kernel voi. [17. Tesla.. 29.636 53,52 50,81 gather kernel void .. [13.. Tesl.. .620 59,38 66,15
pme spline and spread kernel voi. [17. Tesla.. 3.870 49,12 20,37 spline and spread void .. [13.. Tesl.. .33 44,29 21,39
pme gather kernel voi. [17.. Tesla.. 29,501 53,68 50,87 gather kernel void .. [13.. Tesl.. .389 60,50 67,42
pme spline and spread kernel voi. [17. Tesla.. 3. 235 49,085 20,32 spline and spread void .. [13.. Tesl.. .615 44,73 21,62
pme gather kernel voi. [17. Tesla.. 29.785 53,20 50,67 gather kernel void .. [13.. Tesl.. .558 60,23 67,06
pme spline and spread kernel voi. [17. Tesla.. B2. 49,19 20,40 spline and spread void .. [13.. Tesl. .261 44,96 21,73
pme gather kernel voi. [17.. Tesla. 29. 54,32 51,50 gather kernel void .. [13.. Tesl.. .457 60,46 67,32
pme spline and spread kernel voi. [17. Tesla. . 49,89 20,35 spline and spread void .. [13.. Tesl.. .927 45,16 21,84
pme gather kernel voi. [17.. Tesla.. . 53,61 58,79 gather kernel void .. [13.. Tesl. .874 59,62 66,40
pme spline and spread kernel voi. [17.. Tesla.. . 48,98 20,31 spline and spread void .. [13.. Tesl. .266 44,95 21,73
pme gather kernel vol.. [17.. Tesla.. . 52,62 49,97 gather kernel void .. [13.. Tesl.. .221 60,91 67,82
pme spline and spread kernel vol. [17.. Tesla. - 48,84 20,24 spline and spread void .. [13.. Tesl.. .452 45,50 22,00
pme gather kernel voi. [17. Tesla. . 53,74 50,99 gather kernel void .. [13. Tesl. .432 60,54 67,32

47 <A NVIDIA

Customize Data Collection
and Analysis

Identifier: "SpeedOfLight"
DisplayName: "GPU Speed Of Light"
Description: "High-level overview of
Order: 10
Sets {
Identifier: "default"
}
Sets {
Identifier: "full"
}
Header {
Metrics {
Label: "SOL SM"
Name: "sm__throughput.avg.
pct of peak sustained elapsed"
}
Metrics {
Label: "Duration"
Name: "gpu time duration.sum"
}
Metrics {
Label: "SOL Memory"

Customize Sections

~ GPU Speed Of Light 4\

" i f the mpute and mk

Frequenc

GPU Utilization

50.0

Speed OFf Light [%a]

Metrics collection

Metric presentation
Tables
Charts

Name: "gpu compute memory throughput.avg.

pct of peak sustained elapsed"
}
Metrics {
Label: "Elapsed Cycles"
Name: "gpc cycles elapsed.max"

Source page correlation
Details page ordering
Section set association

49

ANVIDIA.

Customize Rules

import NvRules
import math
Recommendations
def get identifier():
return "SOLBottleneck" A Botteneck

def get section_identifier():
return "SpeedOfLight"

def apply (handle) : Python rules accessing collected data
ctx = NvRules.get context (handle) 1 1
action = ctx.rgngg_by_idx(O) .action by idx(0) Ava]lable n UI and CLI .
fe = ctx.frontend() Performance analysis guidance

num_waves = By NVIDIA

action.metric by name ("launch waves per multiprocessor")

.as_double () By your own experts
smSolPct = action.metric by name ("sm throughput.av: 3 3
e P s S et S Allow users better understanding of recommendations
memSolPct =
action.metric by name ("gpu compute memory throughput.avg
.pct_of peak sustained elapsed").as_double() In neXt version: dynamIC report naV]gatlon

balanced threshold = 10
latency bound threshold = 60
no_bound threshold = 80
waves threshold = 1

50 ANVIDIA.

Conclusion

Known Issues/Outlook

[https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues }

Outlook for next version
Improved multi-process/MPI support
Parity with nvprof report name placeholders (process ID, env var, running number)
Better kernel name demangler
Improved memory workload analysis tables
Dynamic report navigation

Uncoalesced memory rules

52 ANVIDIA.

Conclusion

Nsight Compute enables detailed kernel analysis
Rules give guidance on optimization opportunities and help metric understanding
Limit sections/metrics to what is required when overhead is a concern

Still requires level of hardware understanding to fully utilize the tool - pay attention to rule results

~ GPU Speed Of Light A SOL Chart
501

GPU Utilization

50,0
Speed Of Light [%]
Recommendations

throughput andjor

A Bottleneck L“

53 ANVIDIA.

ié¢ THANK YOU!

Download
Documentation
Forums

Further Training

https://developer.nvidia.com/nsight-compute (can we newer than toolkit version)

https://docs.nvidia.com/nsight-compute (and local with the tool)

https://devtalk.nvidia.com

Blue Waters Seminar https://bluewaters.ncsa.illinois.edu/webinars/petascale-
computing/nsight-compute

GTC 2019
https://developer.nvidia.com/gtc/2019/video/S59345

Blog posts
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/

https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

54 < NVIDIA.

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute
http://devtalk.nvidia.com
https://bluewaters.ncsa.illinois.edu/webinars/petascale-computing/nsight-compute
https://developer.nvidia.com/gtc/2019/video/S9345
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/

SANVIDIA.

>
If -
| / <78
] o, N
AN
7Y 4
/- \\ \
=
{ \
[¥}
b / » A a\ >
4 7 ‘
! - = 4
»: X
3 A /) \& ~
\ ¥ -
.
¥
e
N /‘/
1 Y
e/
>4 =
>

