Summit Burst Buffer

Christopher Zimmer
Summit Storage Options

- **Parallel File System**
 - Spider-3 center-wide GPFS
 - 250 PB @ 2.5 TB/s
 - ~540 MB/s write performance per node when all nodes are writing

- **Burst Buffer**
 - 4,608 nodes with NVMe SSDs (Samsung PM1725a)
 - 7.3 PB Total
 - 9.67 TB/s aggregate write 27 TB/s aggregate read performance when using all nodes
What’s a Burst Buffer?

• Originally: A combination of software and hardware to accelerate phased periodic I/O
 – E.g. Applications checkpointing hourly

• Why it helps
 – The aggregate Summit NVMe’s have ~4X more write bandwidth than the PFS and a larger factor more meta-data create performance.
 – Goal: shrinking a 5 minute hourly I/O phase for a 24 hour job to 2 minutes
 • Reduces I/O from 8% of application runtime to 3%
 – In early testing the meta-data performance improvement is even greater
Other NVMe Uses

• Machine Learning Training:
 – Each PM1725A offers 1 million 4K reads per second
 – 1.6 TB for datasets

• Scratch space for temporary files

• Extended memory via mmap
 – Storage to reduce memory pressure for infrequently accessed data
When to use the Burst Buffers (Node Scale)

- Alpine GPFS Performance
 - Per node 12-14 GB/s (Without core isolation)
 - Aggregate 2.5 TB/s
 - Full system job will achieve 550 MB/s per node

- Node Local NVME
 - Samsung PM1725A
 - Write 2.1 GB/s
 - Read 5.5 GB/s
 - Scales linearly with Job Size

- Realistically benefit is realized
 - 150 Nodes
When to use continued:

- **24K Files to GPFS (4096 Nodes)**
 - 24 TB of data written
 - 500 seconds spent creating and writing files
 - Most time spent in creation

- **High IOP read workload (Full System)**
 - 4k Random Reads (GPFS) ~100million
 - 4k Random Reads (NVMe) ~4.5 Billion
 - 1M per device
Using a Burst Buffer in a Job

• Interactively:

 bsub -ls -nnodes 1 -PSTF008 -W00:10 -alloc_flags "nvme"
 /bin/bash

 • jsrun -r1 df

 • /dev/mapper/bb-bb1
 • /mnt/bb/cjzimmer

• Batch:

 • #!/bin/bash -l
 • #SBATCH -P STF008
 • #SBATCH -W 01:00
 • #SBATCH -nnodes 1
 • #SBATCH -alloc_flags "gpumps smt4 nvme"
Other ways of using the burst buffers

• OLCF Provides Spectral:
 – Transparent
 – No code changes
 – Automatically detects checkpoint files
 • Stages them to the burst buffer
 • Transfers them to the file-system upon close

• More in-depth presentation tomorrow
Performance

• Measured up to 2048 nodes
Thank you!

• Questions?