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• Deep Learning Tools on Summit

• How to Distribute a Model

• Data Handling

• Launching Jobs

• Distributed Deep Learning Best Practices
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Distributed Deep Learning on Summit:
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DEEP LEARNING TOOLS ON 
SUMMIT

Distributed Deep Learning on Summit
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Watson Machine Learning CE
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TensorFlow 

TensorFlow Probability

TensorBoard

TensorFlow-Keras

BVLC Caffe 

IBM Enhanced Caffe

Caffe2

OpenBLAS

HDF5

Curated, tested and pre-compiled binary 

software distribution that enables enterprises 

to quickly and easily deploy deep learning for 

their data science and analytics development

Including all of the following frameworks:
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• The WML CE Module can be loaded on Summit with the command

– module load ibm-wml-ce

• Loading the module will:

– Activate a conda environment that has all of Watson Machine Learning CE 
installed

– Setup conda channels that point to IBM’s public conda channel for WML 
CE, as well as a local conda channel with Summit specific packages

• Users can either use the activated conda environment, or create their 
own environments from the channels provided by the module

Watson Machine Learning CE:
Summit Module

Introduction to WML CE / 2-10-2020 5 of 31
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• Synchronous All-to-All Data-Parallel Distributed 
GPU Deep Learning

• A process is created for each GPU in the cluster

• Each process contains a complete copy of the 
model

• Mini-batch is spread across all of the processes

– Each process uses different input data

• After each iteration, all of the processes sync and 
average together their gradients, and those 
averages are used to update the local weights.

• Models on each GPU should always be identical.

Data Parallel Distributed Deep Learning
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[Bergstra et al. 2012] 
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Data Parallel Distributed Deep Learning
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Data Parallel Distributed Deep Learning
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HOW TO DISTRIBUTE A MODEL
Distributed Deep Learning on Summit
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• Horovod is a distributed deep learning training framework for 
TensorFlow, Keras and PyTorch and can be found in the WML CE 
module

• Horovod makes it easy to enable distributed deep learning within an 
existing script, while providing very good scaling across a cluster

• Horovod can use different communication libraries to talk between 
"learners", including MPI, NCCL, IBM DDL and GLOO

10 of 31

Horovod
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• In order to use Horovod to perform a distributed deep learning job, the 
following steps must be taken

– Initialize Horovod

– Select the GPU to use based on the local rank of the job

– Scale the learning rate

– Add the Horovod optimizer

– Broadcast global variables

– Modify scripts to only perform checkpointing (and maybe logging) on rank 0

11 of 31

Enable Distributed Deep Learning with Horovod
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• To initialize Horovod in TensorFlow, add the following to your script:

• To initialize Horovod in PyTorch, add the following to your script:
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Enable Distributed Deep Learning with Horovod:
Initialize Horovod
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import horovod.tensorflow as hvd

hvd.init()

import horovod.torch as hvd

hvd.init()



© 2020 IBM Corporation

Welcome to the Waitless World

• Select the GPU to use in TensorFlow:

• Select the GPU to use in PyTorch:
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Enable Distributed Deep Learning with Horovod:
Select a GPU to Run On
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config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

torch.cuda.set_device(hvd.local_rank())
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• In data parallel distributed deep learning, the effective batch size 
increases with the number of "learners". Some hyper-parameters will 
need to be modified to account for this larger batch size.

• Normally, we scale the learning rate by the total number of “learners” 
to offset the effect of the larger global batch size.

– hvd.size() can be used to get the total number of learners:
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Enable Distributed Deep Learning with Horovod:
Scale the Learning Rate
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learn_rate*=hvd.size()
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• The Horovod optimizer enables the "learners" to sync-up.

– In TensorFlow:

– In PyTorch

15 of 31

Enable Distributed Deep Learning with Horovod:
Add the Horovod Optimizer
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opt = hvd.DistributedOptimizer(opt)

optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
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• It is important that each "learner's" variables are initialized with the 
same values. 

• To accomplish this, learner 0 broadcasts the values of all of its 
trainable variables:

– In TensorFlow:

– In PyTorch:
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Enable Distributed Deep Learning with Horovod:
Broadcast Global Variables
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hooks = [hvd.BroadcastGlobalVariablesHook(0)]

hvd.broadcast_parameters(model.state_dict(), root_rank=0)
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Enable Distributed Deep Learning with Horovod:
Broadcast Global Variables
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hooks = [hvd.BroadcastGlobalVariablesHook(0)]

hvd.broadcast_parameters(model.state_dict(), root_rank=0)



© 2020 IBM Corporation

Welcome to the Waitless World

• Since there are multiple processes per node, it is important to make 
sure that the are no file access errors from multiple processes trying to 
write checkpoints at the same time.

• It is also possible to limit the verbosity on all but rank 0 to clean up the 
output.
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Enable Distributed Deep Learning with Horovod:
Restrict Checkpointing to Rank 0
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checkpoint_dir = '/mnt/bb/$USER/train_logs' if hvd.rank() == 0 else None

verbose = hvd.rank() == 0
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DATA HANDLING
Distributed Deep Learning on Summit
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• To gain any benefit from distributed training, each learner needs to 
train on different data. Otherwise each learner is doing the same work.

• There are two common approaches to handling data for distribution:

– Data Splitting

– Data Sampling

• If the model is already randomly shuffling/sampling its data set, it may 
be that no data handling changes are needed to distribute training.

20 of 31

Data Handling
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• One way to ensure that each learner trains on different data is to split 
the training data.

– This can be done offline, before training, and the correct split loaded at 
runtime:

– Or the data can be split at runtime:

• If your model makes use of batch normalization it is important that 
each data split has the same distribution as the full dataset.
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Data Handling:
Data Splitting
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x_train = np.array_split(x_train, hvd.size())[hvd.rank()]
y_train = np.array_split(y_train, hvd.size())[hvd.rank()]

x_train = np.load('train_data_' + str(hvd.rank()) + '.npy')
y_train = np.load('train_labels_' + str(hvd.rank()) + '.npy')
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• Another way to ensure that each learner trains on different data is to 
randomly sample each local batch from the training data at runtime.

– This works well if the batch sizes are significantly smaller than the overall 
size of the data set.

– To ensure that each learner is seeing different data, unique seeds based on 
rank should be used.
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Data Handling:
Data Sampling
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np.random.seed(SEED + hvd.rank())
…
sample = np.random.choice(x_train.shape[0], size=batch_size)
x_train = x_train[sample]
y_train = y_train[sample]
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LAUNCHING JOBS
Distributed Deep Learning on Summit
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• Watson Machine Learning CE provides ddlrun:

– interfaces with lsf to get cluster information

– launches job across all nodes in reservation

– activates the active conda environment on all compute nodes

Launching Jobs:
ddlrun

Introduction to WML CE / 2-10-2020

[brynelso@login2.summit ~]$ bsub -W 30 -nnodes 2 -P ven201 -Is bash
Job <891318> is submitted to default queue <batch>.
<<Waiting for dispatch ...>>
<<Starting on batch1>>
bash-4.2$ module load ibm-wml-ce
(ibm-wml-ce-1.6.2-2) bash-4.2$ ddlrun python pytorch_synthetic.py
+ /sw/summit/xalt/1.1.4/bin/mpirun -x LSB_MCPU_HOSTS -x PATH -x PYTHONPATH -x LD_LIBRARY_PATH -x LSB_JOBID -
disable_gdr -gpu -x NCCL_TREE_THRESHOLD=0 -x NCCL_LL_THRESHOLD=0 -mca plm_rsh_num_concurrent 2 --rankfile
/tmp/DDLRUN/DDLRUN.hNKBnciW3ROH/RANKFILE -n 12 -x DDL_HOST_PORT=2200 -x 
"DDL_HOST_LIST=h20n18:0,2,4,6,8,10;h30n06:1,3,5,7,9,11" -x "DDL_OPTIONS=-mode p:6x2x1x1 " bash -c 'source 
/sw/summit/ibm-wml-ce/anaconda-base/etc/profile.d/conda.sh && conda activate /sw/summit/ibm-wml-ce/anaconda-
base/envs/ibm-wml-ce-1.6.2-2 > /dev/null 2>&1 && python pytorch_synthetic.py'
...
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BEST PRACTICES
Distributed Deep Learning on Summit
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• This BSUB script:

– stages data to each compute nodes local NVME drive

– runs a training job across all nodes

Best Practices:
How to Stage to NVME

Introduction to WML CE / 2-10-2020

#!/bin/bash
#BSUB -W 0:20
#BSUB -P <project>
#BSUB -q batch
#BSUB -J ddl_test
#BSUB -nnodes 18
#BSUB -alloc_flags NVME
module load ibm-wml-ce

ddlrun --accelerators 1 bash -c 'cp -Ra /gpfs/alpine/proj-shared/<project>/imagenetTF /mnt/bb/$USER'

ddlrun python $CONDA_PREFIX/horovod/examples/pytorch_imagenet_resnet50.py \
--train-dir /mnt/bb/$USER/imagenetTF/train \
--val-dir /mnt/bb/$USER/imagenetTF/val

26 of 31



© 2020 IBM Corporation

Welcome to the Waitless World

• -alloc_flags NVME gives access to the NVME drives

• The NVME filesystem can be accessed at /mnt/bb/$USER

Best Practices:
How to Stage to NVME
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• By default only the gradients, and by extension the weights, are 
synchronized between processes.

• To ensure things like early stopping and velocity based learning rate 
schedules are the same across nodes some additional synchronizing 
is needed.

– In tf.keras this can be accomplished with the MetricAverageCallback

Best Practices:
Synchronized Scheduling and Early Stopping

Introduction to WML CE / 2-10-2020 28 of 31

callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0),
hvd.callbacks.MetricAverageCallback(),
ModelCheckpoint(checkpoint_file, monitor='val_loss', save_best_only=True),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=lrate*0.0001),
EarlyStopping(patience=5, min_delta=0.0001)])
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• Most frameworks support some method of on-the-fly validation.

• If the validation is not also distributed, it will quickly bottleneck the 
training.

• In tf.keras this can be accomplished by splitting or sampling the 
validation data in the same manner as the training data, and using 
the MetricAverageCallback to average the validation loss.

• In other frameworks it may be necessary to explicitly average the 
validation loss from each node.

Best Practices:
Distribute On-the-Fly Validation

Introduction to WML CE / 2-10-2020 29 of 31
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Thank You

Bryant Nelson

Brad Nemanich

—

bryant.nelson@ibm.com

brad.nemanich@ibm.com

http://www.ibm.com
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• OLCF IBM Watson Machine Learning CE documentation:

– https://docs.olcf.ornl.gov/software/analytics/ibm-wml-ce.html

• IBM WML CE Public Conda Channel with x86 Support:

– https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/

– Usage Documentation:

o https://www.ibm.com/support/knowledgecenter/SS5SF7_1.6.2/navigation/wmlce_install.htm

• IBM CML CE Early Access Channel:

– https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda-early-access/

– Usage Documentation:

o https://developer.ibm.com/linuxonpower/2020/02/10/using-the-watson-machine-learning-community-edition-
auxiliary-channels/
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