
Welcome to the Waitless World

Introduction to Watson
Machine Learning CE

Scaling Up Deep Learning Applications on Summit

Bryant Nelson, Brad Nemanich

February 10, 2020

© 2020 IBM Corporation

Welcome to the Waitless World

• Deep Learning Tools on Summit

• How to Distribute a Model

• Data Handling

• Launching Jobs

• Distributed Deep Learning Best Practices

2 of 31

Distributed Deep Learning on Summit:
Overview

Introduction to WML CE / 2-10-2020

© 2020 IBM Corporation

Welcome to the Waitless World

DEEP LEARNING TOOLS ON
SUMMIT

Distributed Deep Learning on Summit

Introduction to WML CE / 2-10-2020 3 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

Watson Machine Learning CE

Introduction to WML CE / 2-10-2020

TensorFlow

TensorFlow Probability

TensorBoard

TensorFlow-Keras

BVLC Caffe

IBM Enhanced Caffe

Caffe2

OpenBLAS

HDF5

Curated, tested and pre-compiled binary

software distribution that enables enterprises

to quickly and easily deploy deep learning for

their data science and analytics development

Including all of the following frameworks:

4 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• The WML CE Module can be loaded on Summit with the command

– module load ibm-wml-ce

• Loading the module will:

– Activate a conda environment that has all of Watson Machine Learning CE
installed

– Setup conda channels that point to IBM’s public conda channel for WML
CE, as well as a local conda channel with Summit specific packages

• Users can either use the activated conda environment, or create their
own environments from the channels provided by the module

Watson Machine Learning CE:
Summit Module

Introduction to WML CE / 2-10-2020 5 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• Synchronous All-to-All Data-Parallel Distributed
GPU Deep Learning

• A process is created for each GPU in the cluster

• Each process contains a complete copy of the
model

• Mini-batch is spread across all of the processes

– Each process uses different input data

• After each iteration, all of the processes sync and
average together their gradients, and those
averages are used to update the local weights.

• Models on each GPU should always be identical.

Data Parallel Distributed Deep Learning

Introduction to WML CE / 2-10-2020 6 of 31

[Bergstra et al. 2012]

© 2020 IBM Corporation

Welcome to the Waitless World

7 of 31

Data Parallel Distributed Deep Learning

Introduction to WML CE / 2-10-2020

Local

Batch N

GPU 1

GPU 2

GPU N

…

Dataset

Local

Batch 1

Local

Batch 2

© 2020 IBM Corporation

Welcome to the Waitless World

8 of 31

Data Parallel Distributed Deep Learning

Introduction to WML CE / 2-10-2020

Local

Batch N

GPU 1

GPU 2

GPU N

…

Dataset

Local

Batch 1

Local

Batch 2

Effective

Batch

© 2020 IBM Corporation

Welcome to the Waitless World

HOW TO DISTRIBUTE A MODEL
Distributed Deep Learning on Summit

Introduction to WML CE / 2-10-2020 9 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• Horovod is a distributed deep learning training framework for
TensorFlow, Keras and PyTorch and can be found in the WML CE
module

• Horovod makes it easy to enable distributed deep learning within an
existing script, while providing very good scaling across a cluster

• Horovod can use different communication libraries to talk between
"learners", including MPI, NCCL, IBM DDL and GLOO

10 of 31

Horovod

Introduction to WML CE / 2-10-2020

© 2020 IBM Corporation

Welcome to the Waitless World

• In order to use Horovod to perform a distributed deep learning job, the
following steps must be taken

– Initialize Horovod

– Select the GPU to use based on the local rank of the job

– Scale the learning rate

– Add the Horovod optimizer

– Broadcast global variables

– Modify scripts to only perform checkpointing (and maybe logging) on rank 0

11 of 31

Enable Distributed Deep Learning with Horovod

Introduction to WML CE / 2-10-2020

© 2020 IBM Corporation

Welcome to the Waitless World

• To initialize Horovod in TensorFlow, add the following to your script:

• To initialize Horovod in PyTorch, add the following to your script:

12 of 31

Enable Distributed Deep Learning with Horovod:
Initialize Horovod

Introduction to WML CE / 2-10-2020

import horovod.tensorflow as hvd

hvd.init()

import horovod.torch as hvd

hvd.init()

© 2020 IBM Corporation

Welcome to the Waitless World

• Select the GPU to use in TensorFlow:

• Select the GPU to use in PyTorch:

13 of 31

Enable Distributed Deep Learning with Horovod:
Select a GPU to Run On

Introduction to WML CE / 2-10-2020

config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

torch.cuda.set_device(hvd.local_rank())

© 2020 IBM Corporation

Welcome to the Waitless World

• In data parallel distributed deep learning, the effective batch size
increases with the number of "learners". Some hyper-parameters will
need to be modified to account for this larger batch size.

• Normally, we scale the learning rate by the total number of “learners”
to offset the effect of the larger global batch size.

– hvd.size() can be used to get the total number of learners:

14 of 31

Enable Distributed Deep Learning with Horovod:
Scale the Learning Rate

Introduction to WML CE / 2-10-2020

learn_rate*=hvd.size()

© 2020 IBM Corporation

Welcome to the Waitless World

• The Horovod optimizer enables the "learners" to sync-up.

– In TensorFlow:

– In PyTorch

15 of 31

Enable Distributed Deep Learning with Horovod:
Add the Horovod Optimizer

Introduction to WML CE / 2-10-2020

opt = hvd.DistributedOptimizer(opt)

optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

© 2020 IBM Corporation

Welcome to the Waitless World

• It is important that each "learner's" variables are initialized with the
same values.

• To accomplish this, learner 0 broadcasts the values of all of its
trainable variables:

– In TensorFlow:

– In PyTorch:

16 of 31

Enable Distributed Deep Learning with Horovod:
Broadcast Global Variables

Introduction to WML CE / 2-10-2020

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

hvd.broadcast_parameters(model.state_dict(), root_rank=0)

© 2020 IBM Corporation

Welcome to the Waitless World

• It is important that each "learner's" variables are initialized with the
same values.

• To accomplish this, learner 0 broadcasts the values of all of its
trainable variables:

– In TensorFlow:

– In PyTorch:

17 of 31

Enable Distributed Deep Learning with Horovod:
Broadcast Global Variables

Introduction to WML CE / 2-10-2020

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

hvd.broadcast_parameters(model.state_dict(), root_rank=0)

© 2020 IBM Corporation

Welcome to the Waitless World

• Since there are multiple processes per node, it is important to make
sure that the are no file access errors from multiple processes trying to
write checkpoints at the same time.

• It is also possible to limit the verbosity on all but rank 0 to clean up the
output.

18 of 31

Enable Distributed Deep Learning with Horovod:
Restrict Checkpointing to Rank 0

Introduction to WML CE / 2-10-2020

checkpoint_dir = '/mnt/bb/$USER/train_logs' if hvd.rank() == 0 else None

verbose = hvd.rank() == 0

© 2020 IBM Corporation

Welcome to the Waitless World

DATA HANDLING
Distributed Deep Learning on Summit

Introduction to WML CE / 2-10-2020 19 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• To gain any benefit from distributed training, each learner needs to
train on different data. Otherwise each learner is doing the same work.

• There are two common approaches to handling data for distribution:

– Data Splitting

– Data Sampling

• If the model is already randomly shuffling/sampling its data set, it may
be that no data handling changes are needed to distribute training.

20 of 31

Data Handling

Introduction to WML CE / 2-10-2020

© 2020 IBM Corporation

Welcome to the Waitless World

• One way to ensure that each learner trains on different data is to split
the training data.

– This can be done offline, before training, and the correct split loaded at
runtime:

– Or the data can be split at runtime:

• If your model makes use of batch normalization it is important that
each data split has the same distribution as the full dataset.

21 of 31

Data Handling:
Data Splitting

Introduction to WML CE / 2-10-2020

x_train = np.array_split(x_train, hvd.size())[hvd.rank()]
y_train = np.array_split(y_train, hvd.size())[hvd.rank()]

x_train = np.load('train_data_' + str(hvd.rank()) + '.npy')
y_train = np.load('train_labels_' + str(hvd.rank()) + '.npy')

© 2020 IBM Corporation

Welcome to the Waitless World

• Another way to ensure that each learner trains on different data is to
randomly sample each local batch from the training data at runtime.

– This works well if the batch sizes are significantly smaller than the overall
size of the data set.

– To ensure that each learner is seeing different data, unique seeds based on
rank should be used.

22 of 31

Data Handling:
Data Sampling

Introduction to WML CE / 2-10-2020

np.random.seed(SEED + hvd.rank())
…
sample = np.random.choice(x_train.shape[0], size=batch_size)
x_train = x_train[sample]
y_train = y_train[sample]

© 2020 IBM Corporation

Welcome to the Waitless World

LAUNCHING JOBS
Distributed Deep Learning on Summit

Introduction to WML CE / 2-10-2020 23 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• Watson Machine Learning CE provides ddlrun:

– interfaces with lsf to get cluster information

– launches job across all nodes in reservation

– activates the active conda environment on all compute nodes

Launching Jobs:
ddlrun

Introduction to WML CE / 2-10-2020

[brynelso@login2.summit ~]$ bsub -W 30 -nnodes 2 -P ven201 -Is bash
Job <891318> is submitted to default queue <batch>.
<<Waiting for dispatch ...>>
<<Starting on batch1>>
bash-4.2$ module load ibm-wml-ce
(ibm-wml-ce-1.6.2-2) bash-4.2$ ddlrun python pytorch_synthetic.py
+ /sw/summit/xalt/1.1.4/bin/mpirun -x LSB_MCPU_HOSTS -x PATH -x PYTHONPATH -x LD_LIBRARY_PATH -x LSB_JOBID -
disable_gdr -gpu -x NCCL_TREE_THRESHOLD=0 -x NCCL_LL_THRESHOLD=0 -mca plm_rsh_num_concurrent 2 --rankfile
/tmp/DDLRUN/DDLRUN.hNKBnciW3ROH/RANKFILE -n 12 -x DDL_HOST_PORT=2200 -x
"DDL_HOST_LIST=h20n18:0,2,4,6,8,10;h30n06:1,3,5,7,9,11" -x "DDL_OPTIONS=-mode p:6x2x1x1 " bash -c 'source
/sw/summit/ibm-wml-ce/anaconda-base/etc/profile.d/conda.sh && conda activate /sw/summit/ibm-wml-ce/anaconda-
base/envs/ibm-wml-ce-1.6.2-2 > /dev/null 2>&1 && python pytorch_synthetic.py'
...

24 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

BEST PRACTICES
Distributed Deep Learning on Summit

Introduction to WML CE / 2-10-2020 25 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• This BSUB script:

– stages data to each compute nodes local NVME drive

– runs a training job across all nodes

Best Practices:
How to Stage to NVME

Introduction to WML CE / 2-10-2020

#!/bin/bash
#BSUB -W 0:20
#BSUB -P <project>
#BSUB -q batch
#BSUB -J ddl_test
#BSUB -nnodes 18
#BSUB -alloc_flags NVME
module load ibm-wml-ce

ddlrun --accelerators 1 bash -c 'cp -Ra /gpfs/alpine/proj-shared/<project>/imagenetTF /mnt/bb/$USER'

ddlrun python $CONDA_PREFIX/horovod/examples/pytorch_imagenet_resnet50.py \
--train-dir /mnt/bb/$USER/imagenetTF/train \
--val-dir /mnt/bb/$USER/imagenetTF/val

26 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• -alloc_flags NVME gives access to the NVME drives

• The NVME filesystem can be accessed at /mnt/bb/$USER

Best Practices:
How to Stage to NVME

Introduction to WML CE / 2-10-2020

#!/bin/bash
#BSUB -W 0:20
#BSUB -P <project>
#BSUB -q batch
#BSUB -J ddl_test
#BSUB -nnodes 18
#BSUB -alloc_flags NVME
module load ibm-wml-ce

ddlrun --accelerators 1 bash -c 'cp -Ra /gpfs/alpine/proj-shared/<project>/imagenetTF /mnt/bb/$USER'

ddlrun python $CONDA_PREFIX/horovod/examples/pytorch_imagenet_resnet50.py \
--train-dir /mnt/bb/$USER/imagenetTF/train \
--val-dir /mnt/bb/$USER/imagenetTF/val

27 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

• By default only the gradients, and by extension the weights, are
synchronized between processes.

• To ensure things like early stopping and velocity based learning rate
schedules are the same across nodes some additional synchronizing
is needed.

– In tf.keras this can be accomplished with the MetricAverageCallback

Best Practices:
Synchronized Scheduling and Early Stopping

Introduction to WML CE / 2-10-2020 28 of 31

callbacks=[hvd.callbacks.BroadcastGlobalVariablesCallback(0),
hvd.callbacks.MetricAverageCallback(),
ModelCheckpoint(checkpoint_file, monitor='val_loss', save_best_only=True),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=lrate*0.0001),
EarlyStopping(patience=5, min_delta=0.0001)])

© 2020 IBM Corporation

Welcome to the Waitless World

• Most frameworks support some method of on-the-fly validation.

• If the validation is not also distributed, it will quickly bottleneck the
training.

• In tf.keras this can be accomplished by splitting or sampling the
validation data in the same manner as the training data, and using
the MetricAverageCallback to average the validation loss.

• In other frameworks it may be necessary to explicitly average the
validation loss from each node.

Best Practices:
Distribute On-the-Fly Validation

Introduction to WML CE / 2-10-2020 29 of 31

© 2020 IBM Corporation

Welcome to the Waitless World

Thank You

Bryant Nelson

Brad Nemanich

—

bryant.nelson@ibm.com

brad.nemanich@ibm.com

http://www.ibm.com

Introduction to WML CE / 2-10-2020 30 of 31

mailto:bryant.nelson@ibm.com
mailto:brad.nemanich@ibm.com

© 2020 IBM Corporation

Welcome to the Waitless World

• OLCF IBM Watson Machine Learning CE documentation:

– https://docs.olcf.ornl.gov/software/analytics/ibm-wml-ce.html

• IBM WML CE Public Conda Channel with x86 Support:

– https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/

– Usage Documentation:

o https://www.ibm.com/support/knowledgecenter/SS5SF7_1.6.2/navigation/wmlce_install.htm

• IBM CML CE Early Access Channel:

– https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda-early-access/

– Usage Documentation:

o https://developer.ibm.com/linuxonpower/2020/02/10/using-the-watson-machine-learning-community-edition-
auxiliary-channels/

31 of 31

Documentation and Resources

Introduction to WML CE / 2-10-2020

https://docs.olcf.ornl.gov/software/analytics/ibm-wml-ce.html
https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/
https://www.ibm.com/support/knowledgecenter/SS5SF7_1.6.2/navigation/wmlce_install.htm
https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda-early-access/
https://developer.ibm.com/linuxonpower/2020/02/10/using-the-watson-machine-learning-community-edition-auxiliary-channels/

