
CUDA OPTIMIZATION,
PART 1
NVIDIA Corporation

2

OUTLINE

Architecture:

Kepler/Maxwell/Pascal/Volta

Kernel optimizations

Launch configuration (use lots of threads)

Part 2 (next session):

Global memory throughput (use memory efficiently)

Shared memory access

Most concepts in this
presentation apply to
any language or API

on NVIDIA GPUs

3

KEPLER CC 3.5 SM (GK110)

“SMX” (enhanced SM)

192 SP units (“cores”)

64 DP units

LD/ST units, 64K registers

4 warp schedulers

Each warp scheduler is dual-issue capable

K20: 13 SMX’s, 5GB

K20X: 14 SMX’s, 6GB

K40: 15 SMX’s, 12GB

4

MAXWELL/PASCAL CC5.2, CC6.1 SM
“SMM” (enhanced SM)

128 SP units (“cores”)

4 DP units

LD/ST units

cc 6.1: INT8

4 warp schedulers

Each warp scheduler is dual-issue capable

M40: 24 SMM’s, 12/24GB

P40: 30 SM’s, 24GB

P4: 20 SM’s, 8GB

5

PASCAL/VOLTA CC6.0/7.0

64 SP units (“cores”)

32 DP units

LD/ST units

FP16 @ 2x SP rate

cc7.0: TensorCore

P100/V100 2/4 warp schedulers

Volta adds separate int32 units

P100: 56 SM’s, 16GB

V100: 80 SM’s, 16/32GB

6

Software Hardware

Threads are executed by scalar processors

Thread

Scalar
Processor

Thread
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

EXECUTION MODEL

7

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of
32-thread warps

A warp is executed
physically in parallel
(SIMD) on a multiprocessor

=

WARPS

LAUNCH CONFIGURATION

9

LAUNCH CONFIGURATION

Key to understanding:

Instructions are issued in order

A thread stalls when one of the operands isn’t ready:

Memory read by itself doesn’t stall execution

Latency is hidden by switching threads

GMEM latency: >100 cycles (varies by architecture/design)

Arithmetic latency: <100 cycles (varies by architecture/design)

How many threads/threadblocks to launch?

Conclusion:

Need enough threads to hide latency

10

GPU LATENCY HIDING

In CUDA C source code:

int idx = threadIdx.x+blockDim.x*blockIdx.x;

c[idx] = a[idx] * b[idx];

In machine code:

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

11

GPU LATENCY HIDING – INSIDE THE SM
I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

12

GPU LATENCY HIDING – INSIDE THE SM

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

13

GPU LATENCY HIDING – INSIDE THE SM

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

14

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

15

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

16

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

17

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

18

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

19

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I1I0 I2
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

20

GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I1I0 I2
I2I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 …

21

LAUNCH CONFIGURATION

Hiding arithmetic latency:

Need ~10’s warps (~320 threads) per SM

Or, latency can also be hidden with independent instructions from the same warp

->if instructions never depends on the output of preceding instruction, then only 5 warps are needed, etc.

Maximizing global memory throughput:

Depends on the access pattern, and word size

Need enough memory transactions in flight to saturate the bus

Independent loads and stores from the same thread

Loads and stores from different threads

Larger word sizes can also help (float2 is twice the transactions of float, for example)

22

MAXIMIZING MEMORY THROUGHPUT
Increment of an array of 64M elements

Two accesses per thread (load then store) - dependent, so really 1 access per thread at a time

theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.
For example:

Four 32-bit ~= one 128-bit

23

LAUNCH CONFIGURATION: SUMMARY

Need enough total threads to keep GPU busy

Typically, you’d like 512+ threads per SM (aim for 2048 - maximum “occupancy”)

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration

Threads per block should be a multiple of warp size (32)

SM can concurrently execute at least 16 thread blocks (Maxwell/Pascal/Volta: 32)

Really small thread blocks prevent achieving good occupancy

Really large thread blocks are less flexible

Could generally use 128-256 threads/block, but use whatever is best for the application

24

ASIDE: WHAT IS OCCUPANCY?

A measure of the actual thread load in an SM, vs. peak theoretical/peak achievable

CUDA includes an occupancy calculator spreadsheet

Achievable occupancy is affected by limiters to occupancy

Primary limiters:

Registers per thread (can be reported by the profiler, or can get at compile time)

Threads per threadblock

Shared memory usage

25

SUMMARY

GPU is a massively thread-parallel, latency hiding machine

Kernel Launch Configuration:

Launch enough threads per SM to hide latency

Launch enough threadblocks to load the GPU

Use analysis/profiling when optimizing:

“Analysis-driven Optimization” (future session)

-> Nsight Compute can show you information about whether you’ve saturated the compute
subsystem or the memory subsystem.

26

FUTURE SESSIONS

Fundamental Optimization, Part 2

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups

27

FURTHER STUDY
Optimization in-depth:

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

CUDA Best Practices Guide:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html

28

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw3/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

QUESTIONS?

