INTRODUCTION TO THE FRONTIER SYSTEM

Frontier Application Readiness Kick-Off Workshop
Oct. 2019
Technical Data Rights

All materials contained in, attached to, or referenced by this document that are marked Cray Confidential or with a similar restrictive legend may not be disclosed in any form without the advance written permission of Cray, a Hewlett Packard Enterprise company. These data are submitted with limited rights under Government Contract No. B626589 and Lease Agreement 4000167127. These data may be reproduced and used by the Government with the express limitation that they will not, without written permission of Cray, be used for purposes of manufacture nor disclosed outside the Government.

This notice shall be marked on any reproduction of these data, in whole or in part.
Copyright and Trademark Acknowledgements

©2016-2019 Cray, a Hewlett Packard Enterprise company, All Rights Reserved.

Portions Copyright Advanced Micro Devices, Inc. ("AMD") Confidential and Proprietary.

The following are trademarks of Cray and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, and REVEAL. The following system family marks, and associated model number marks, are trademarks of Cray: CS, CX, XC, XE, XK, XMT, and XT. ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ThunderX, ThunderX2, and ThunderX3 are trademarks or registered trademarks of Cavium Inc. in the U.S. and other countries. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Intel, the Intel logo, Intel Cilk, Intel True Scale Fabric, Intel VTune, Xeon, and Intel Xeon Phi are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries. Lustre is a trademark of Xyratex. NVIDIA, Kepler, and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Other trademarks used in this document are the property of their respective owners.
FORWARD LOOKING STATEMENTS

This presentation may contain forward-looking statements that involve risks, uncertainties and assumptions. If the risks or uncertainties ever materialize or the assumptions prove incorrect, the results of Hewlett Packard Enterprise Company and its consolidated subsidiaries (“Hewlett Packard Enterprise”) may differ materially from those expressed or implied by such forward-looking statements and assumptions. All statements other than statements of historical fact are statements that could be deemed forward-looking statements, including but not limited to any statements regarding the expected benefits and costs of the transaction contemplated by this presentation; the expected timing of the completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the transaction considering the various conditions to the transaction, some of which are outside the parties’ control, including those conditions related to regulatory approvals; projections of revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other financial items; any statements concerning the expected development, performance, market share or competitive performance relating to products or services; any statements regarding current or future macroeconomic trends or events and the impact of those trends and events on Hewlett Packard Enterprise and its financial performance; any statements of expectation or belief; and any statements of assumptions underlying any of the foregoing. Risks, uncertainties and assumptions include the possibility that expected benefits of the transaction described in this presentation may not materialize as expected; that the transaction may not be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business may not perform as expected due to transaction-related uncertainty or other factors; that the parties are unable to successfully implement integration strategies; the need to address the many challenges facing Hewlett Packard Enterprise’s businesses; the competitive pressures faced by Hewlett Packard Enterprise’s businesses; risks associated with executing Hewlett Packard Enterprise’s strategy; the impact of macroeconomic and geopolitical trends and events; the development and transition of new products and services and the enhancement of existing products and services to meet customer needs and respond to emerging technological trends; and other risks that are described in our Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or updated from time to time in Hewlett Packard Enterprise’s other filings with the Securities and Exchange Commission, including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation and does not intend to update these forward-looking statements.
U.S. Department of Energy and Cray to Deliver Record-Setting Frontier Supercomputer at ORNL

Exascale system expected to be world’s most powerful computer for science and innovation

Topic: Supercomputing

May 7, 2019

OAK RIDGE, Tenn., May 7, 2019—The U.S. Department of Energy today announced a contract with Cray Inc. to build the Frontier supercomputer at Oak Ridge National Laboratory, which is anticipated to debut in 2021 as the world’s most powerful computer with a performance of greater than 1.5 exaflops.
Frontier is a Shasta system
Shasta is Cray’s platform for the Exascale Era

Flexible, Extensible, & Scalable Hardware Infrastructure
Wide Diversity of Processors
Slingshot Interconnect
Standards-based (interoperable and open)
High-Performance, Tiered, Integrated Storage
Dynamic, Cloud-like Environment for Hybrid Workflows

HPC
AI
Analytics
Cloud
IoT
Shasta Flexible Compute Infrastructure

“Mountain”
Dense, scale-optimized Cabinet

- Up to 300KW with warm water cooling
- 512+ high-performance processors
- Flexible, high-density interconnect

“River”
Standard 19” Rack

- Air cooled with liquid cooling options
- Wide range of available compute and storage

Same Interconnect - Same Software Environment
Slingshot Overview

Slingshot is Cray’s 8th generation scalable interconnect

Earlier, Cray pioneered:
- Adaptive routing
- High-radix switch design
- Dragonfly topology

64 ports x 200 Gbps
Over 250K endpoints with a diameter of just three hops

Ethernet Compliant
Easy connectivity to datacenters and third-party storage; “HPC inside”

World class Adaptive Routing and QoS
High utilization at scale; flawless support for hybrid workloads

Groundbreaking Congestion Control
Performance isolation between workloads

Low, Uniform Latency
Focus on tail latency, because real apps synchronize
HPC Ethernet Protocol
Enhancements for Efficiency and Resiliency

• Slingshot speaks standard Ethernet at the edge, and optimized HPC Ethernet on internal links
• Reduced minimum frame size
• Removed inter-packet gap
• Optimized header
• Credit-based flow control

• Protocol also provides resiliency benefits
 • Low-latency FEC (see 25Gbit Ethernet Consortium)
 • Link level retry to tolerate transient errors
 • Lane degrade to tolerate hard failures
Slingshot Congestion Management

- Hardware automatically tracks all outstanding packets
 - Knows what is flowing between every pair of endpoints
- Quickly identifies and controls causes of congestion
 - Pushes back on sources... just enough
 - Frees up buffer space for everyone else
 - Other traffic not affected and can pass stalled traffic
 - Avoids HOL blocking across entire fabric
 - Fundamentally different than traditional ECN-based congestion control
- Fast and stable across wide variety of traffic patterns
 - Suitable for dynamic HPC traffic
- Performance isolation between apps on same QoS class
 - Applications much less vulnerable to other traffic on the network
 - Predictable runtimes
 - Lower mean and tail latency – a big benefit in apps with global synchronization
Congestion Management Provides Performance Isolation

Job Interference in today's networks
Congesting (green) traffic hurts well-behaved (blue) traffic, and really hurts latency-sensitive, synchronized (red) traffic.

With Slingshot Advanced Congestion Management
Shasta Pulls Storage onto Slingshot HSN

Traditional Model

- High Speed Network
- Compute Node
- OSS (HDD)
- LNET
- OSS & MDS
- OSS (HDD)

Benefits:
- Lower complexity
- Lower latency
- Improved small I/O performance

Shasta

- Slingshot High Speed Network
- Compute Node
- OSS & MDS
- OSS (HDD & SSD)

Tiered Flash and HDD Servers
Shasta Developer Environment

<table>
<thead>
<tr>
<th>Programming Languages</th>
<th>Programming Models</th>
<th>Programming Environments</th>
<th>Optimized Libraries</th>
<th>Tools (continued)</th>
<th>Analytics / AI **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages</td>
<td>Distributed Memory</td>
<td>ProgEnv-</td>
<td>Scientific Libraries</td>
<td>Tools</td>
<td>AI Toolboxes</td>
</tr>
<tr>
<td>Fortran</td>
<td>Cray MPI SHMEM</td>
<td>Cray Compiling Environment PrgEnv-cray</td>
<td>LAPACK</td>
<td>Environment setup</td>
<td>CrayUrinka AI - Analytics</td>
</tr>
<tr>
<td>C</td>
<td>Shared Memory / GPU</td>
<td>GNU PrgEnv-gnu</td>
<td>ScaLAPACK</td>
<td>Modules / LMOD</td>
<td>Chapel AI</td>
</tr>
<tr>
<td>C++</td>
<td>OpenMP</td>
<td>3rd Party compilers (IAMD, etc) Libraries, Tools</td>
<td>BLAS</td>
<td>Debuggers</td>
<td>Cray Apprentice²</td>
</tr>
<tr>
<td>Chapel</td>
<td>PGAS & Global View</td>
<td></td>
<td>Iterative Refinement Toolkit</td>
<td>gdb4hpc</td>
<td>DL Frameworks</td>
</tr>
<tr>
<td>Python</td>
<td>UPC</td>
<td></td>
<td>FFTW</td>
<td>TotalView</td>
<td>Cray PE DL Scalability Plugin</td>
</tr>
<tr>
<td>R</td>
<td>Fortran coarrays</td>
<td></td>
<td>I/O Libraries</td>
<td>DDT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C++</td>
<td></td>
<td>NetCDF</td>
<td>Debugging Support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapel</td>
<td></td>
<td>HDF5</td>
<td>Porting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Arrays</td>
<td></td>
<td></td>
<td>Reveal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCDB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cray Developed**
- **Cray added value to 3rd party**
- **3rd party packaging**
- **Licensed ISV SW**
Frontier Application Software Stack

- Cray, and AMD are working together with ORNL and other Labs to deliver a full software stack
- Provide Compiler and library choice
- Includes:
 - Multiple programming environments
 - Performance and correctness tools
 - Will Include Optimizations such as:
 - Cray MPI GPU-to-GPU data movement
 - libsci_acc
 - Cray PE DL Plugin
HIGH PERFORMANCE CPU
CUSTOMIZED FOR HPC

Custom AMD EPYC processor optimized for HPC and AI

Utilizes Future “Zen” Core High-Performance Architecture

AI-Optimized for Supercomputing Workloads
HIGH PERFORMANCE GPU OPTIMIZED FOR HPC AND AI

HPC-Customized Compute Engines
Extensive Mixed Precision Ops for Optimum Deep Learning Performance
High-Bandwidth Memory (HBM) for Maximum Throughput

© 2019 Cray, a Hewlett Packard Enterprise company
Infinity Fabric

High-Bandwidth, Low-Latency Connection Between CPU and GPU

Custom Coherent Fabric

Connects 4:1 GPU to CPU Per Node
Shasta Blades, Cabinets & Slingshot Network
Frontier - System Summary

<table>
<thead>
<tr>
<th>Hardware Element</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Performance</td>
<td>> 1.5 ExaFlops</td>
</tr>
<tr>
<td>Footprint</td>
<td>> 100 cabinets</td>
</tr>
<tr>
<td>Node</td>
<td>1 HPC and AI Optimized AMD Future EPYC CPU 4 Purpose Built AMD Radeon Instinct GPU</td>
</tr>
<tr>
<td>CPU-GPU Interconnect</td>
<td>AMD Infinity Fabric Coherent memory across the node</td>
</tr>
<tr>
<td>System Interconnect</td>
<td>Multiple Slingshot NICs per node providing 100 GB/s network bandwidth Slingshot dragonfly network which provides adaptive routing, congestion management, and quality of service.</td>
</tr>
<tr>
<td>Storage</td>
<td>2-4x performance and capacity of Summit’s I/O subsystem. Frontier will have near node storage.</td>
</tr>
</tbody>
</table>
BANDWIDTH

The network bandwidth of the Frontier system is 24,000,000 times greater than the top home internet connection. With it, you could download 100,000 HD movies in one second.

HORSEPOWER

Frontier will have the performance of the top 160 fastest supercomputers in the world combined.

SIZE

Frontier will cover over 7,300 square feet. That’s almost 2 basketball courts.

SPEED

If all 7.7 billion people on earth each completed one calculation per second, it would take over 6 years to do what the Frontier system can do in 1 second.

CABLING

The 90 miles of cables in the Frontier system would span the distance from Philadelphia to New York City.