
© 2019 Cray, a Hewlett Packard Enterprise company

CRAY COMPILER AND

OPENMP OFFLOADING

Jeff Sandoval, Ph.D.
Frontier Application Readiness

Kick-Off Workshop
October 9, 2019

© 2019 Cray, a Hewlett Packard Enterprise company

• Cray Compiling Environment (CCE) introduction

• CCE OpenMP overview
• CCE OpenMP offloading best practices

• Future CCE OpenMP roadmap

Outline

© 2019 Cray, a Hewlett Packard Enterprise company

• Fortran compiler
• Proprietary front end and optimizer; Cray-modified LLVM
• Fortran 2018 support, excluding coarray teams

• Two C and C++ compiler options
• Default option: Cray-modified Clang+LLVM complier
• “Classic” option: EDG front end; proprietary optimizer; Cray-modified LLVM
• C11 and C++17 support
• gcc 8.1 compatibility
• UPC support

• OpenMP 4.5 support, including offloading for NVIDIA GPUs

Cray Compilation Environment (CCE)

© 2019 Cray, a Hewlett Packard Enterprise company

• Why does Cray develop a compiler at all?

• Performance
• Customer support

• Why build on Clang/LLVM?

• Clang leads C & C++ compilers in standards support and diagnostics
• Clang’s compile time is much faster than Cray’s existing compiler

• Cray can contribute non-differentiating work upstream
• Cray can keep some differentiating work proprietary

A solid base compiler infrastructure frees up Cray compiler developers to focus
more narrowly on HPC and customer-driven features and optimizations

CCE Motivation

© 2019 Cray, a Hewlett Packard Enterprise company

• Loopmark

• Decompile
• CrayPat support

• Cray OpenMP runtime (CPU and GPU)

• Cray libm (optimized versions of select math functions)
• UPC

• Reveal support (in development)

• Enhanced FP trap support (in development)

CCE Clang Differentiation

5

© 2019 Cray, a Hewlett Packard Enterprise company

C/C++ FE (CLANG)

LLVM

C
ra

y
Li

bs
 (

M
at

h,
O

pe
nM

P,
 P

G
AS

)
Li

st
in

g
To

ol
s

Program
 Library

CCE 9.0
Fortran Source C and C++ Source

Cray developed 3rd party with
Cray value added

CCE-Classic

Object Files

CCE-Clang

X86 CG
(LLVM)

Aarch64 CG
(LLVM)

C/C++ FE (EDG)Fortran FE

IPA

Optimizer

GPU
CG

C
ra

y
Li

bs
 (

I/O
, M

at
h,

 …
)

Li
st

in
g

To
ol

s

CCE Differentiation:
• Fast OpenMP 4.5
• Vectorization
• Loopmark
• Reveal & CrayPat

support

© 2019 Cray, a Hewlett Packard Enterprise company

• Moving to two major releases a year (~Q2 and ~Q4)

• CCE codebase and version based off latest Clang major release
• Monthly minor updates will continue for ~5 months after each major release

• CCE 9.0 – June 2019

• Based on development Clang 9.0
• CCE 9.1 – Nov 2019

• Based on released Clang 9.0
• CCE 10.0 – May 2020 (tentative)

• Based on released Clang 10.0

CCE Release and Versioning

© 2019 Cray, a Hewlett Packard Enterprise company

• Different CCE modules for Clang or Classic C/C++
• module load PrgEnv-cray
• module avail cce
• module swap cce/9.0.2
• module swap cce/9.0.2-classic

• Fortran compiler is the same for both modules
• Invoke compiler through CrayPE driver

• cc <CFLAGS> source.c
• CC <CXXFLAGS> source.cpp
• ftn <FFLAGS> source.f90

Invoking CCE

© 2019 Cray, a Hewlett Packard Enterprise company

CCE Classic 9.0 CCE 9.0 Purpose
-O0 -O0 (default) No optimization
-O1 -O1 -ffast-math Light optimization
-O2 (default) -O2 -ffast-math Moderate optimization
-O3 -O3 -ffast-math

-Ofast (recommended starting point)
Heavy optimization

-hpic, -hPIC -fpic, -fPIC Generate position-independent code
-hlist=m -fsave-loopmark Emit Loopmark (.lst)
-hlist=d -fsave-decompile Emit Decompile (.dc and .ll)

Common CCE Compiler Flags

• CCE Clang is a drop-in replacement for upstream Clang
• Cray adds options for new features but keeps existing options
• Special –fno-cray option disables Cray changes

• CCE Clang is NOT a drop-in replacement for CCE Classic – options differ

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OPENMP
OVERVIEW

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OpenMP Flags

General OpenMP CCE 8.7 CCE 9.0 Fortran
and Classic CCE 9.0 Clang C/C++

Enable OpenMP -homp (default) -homp
-fopenmp (alias)

-fopenmp
-fopenmp=libcraymp (Cray runtime)
-fopenmp=libomp (Clang runtime)

Disable OpenMP -hnoomp -hnoomp (default)
-fno-openmp (alias)

-fno-openmp (default)

OpenMP
Offloading

All CCE Compilers
(accel modules) CCE 9.0 Clang C/C++ (optional flags)

Native Host CPU craype-accel-host (default without flags; no warning)
NVIDIA Pascal craype-accel-nvidia60 -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_60
NVIDIA Volta craype-accel-nvidia70 -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_70
AMD Vega20* craype-accel-amd-gfx906 -fopenmp-targets=amdgcn-amd-amdhsa

-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906

*AMD GPU support under development

© 2019 Cray, a Hewlett Packard Enterprise company

• Fully support OpenMP 4.5 (CPU and GPU)
• NVIDIA support today, AMD GPU support under development

• Use CCE OpenMP runtime libraries
• Offers interoperability with CCE Fortran (and Classic C/C++)
• Provides a lightweight, HPC-optimized runtime
• Requires a thin “adapter” layer in Cray’s runtime

• Implement Cray-optimized Clang code generation for accelerator regions
• Mimics the CCE Classic implementation
• Leverages compiler analysis/translation with ultra-lightweight device runtime
• Offers significant performance advantage over upstream Clang

CCE 9.0 Clang C/C++ OpenMP Plan

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OpenMP Limitations on GPU

18

• CCE currently handles these core constructs

• target, teams, distribute, parallel, do/for, barrier,
simd

• Support for other constructs is under development
• E.g., master, single, critical

• Some constructs may be implemented to be “functionally compliant”

• E.g., task, taskloop, cancel, doacross
• Our implementation is driven by user feedback

• More feedback is always appreciated

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OpenMP CPU Interoperability

CCE

Clang

GNU

libcraymp

libgomp

libomp

The libcraymp GNU interface is currently limited to OpenMP 3.1 constructs

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OpenMP GPU Interoperability

Accesses to global variables and calls to functions cannot cross a “compiler boundary”

Additional pre-link steps may need to be added to the application build process if not linked by CCE.

The libcrayacc GNU offloading interface is not yet supported

CCE

Clang

GNU

libcrayacc

libgomp

libomptarget

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OPENMP
OFFLOADING
BEST
PRACTICES

© 2019 Cray, a Hewlett Packard Enterprise company

1. Offload time-intensive parallel loops
• Focus on functional correctness
• Rely on “point-of-use” data transfers

2. Optimize kernel computation
• Temporarily ignore data transfer overheads

3. Optimize data transfers
• Add enclosing data regions and updates where necessary
• Communicate directly to/from GPU memory

4. Use device asynchronously
• Fill device “queue” with a “stream” of dependent work
• Execute multiple kernels in parallel

OpenMP Offloading Strategy

© 2019 Cray, a Hewlett Packard Enterprise company

• “omp target” offloads region of code to an accelerator
• Does not express any parallelism

• “Map” clauses move data to/from accelerator memory
• Scalars are made “firstprivate” at default
• Non-scalars are mapped “tofrom” at default

• “declare target” makes functions and global variables available on accelerator
• “nowait” and “depend” clauses express asynchronous operations

Step 1: Offload Code to GPU with omp target

!$omp target
... ! This code runs serially on the GPU

!$omp end target

© 2019 Cray, a Hewlett Packard Enterprise company

Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.1 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

Introduction

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.1 | 6

GPU w ith 2 SMs

SM 1SM 0

GPU w ith 4 SMs

SM 1SM 0 SM 3SM 2

Block 5 Block 6

Mult it hreaded CUDA Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 1Block 0

Block 3Block 2

Block 5Block 4

Block 7Block 6

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks
of threads that execute independently from each other, so that a GPU with more
multiprocessors will automatically execute the program in less time than a GPU with
fewer multiprocessors.

Figure 5 Automatic Scalability

1.4. Document Structure
This document is organized into the following chapters:

‣ Chapter Introduction is a general introduction to CUDA.
‣ Chapter Programming Model outlines the CUDA programming model.
‣ Chapter Programming Interface describes the programming interface.
‣ Chapter Hardware Implementation describes the hardware implementation.
‣ Chapter Performance Guidelines gives some guidance on how to achieve maximum

performance.
‣ Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.
‣ Appendix C Language Extensions is a detailed description of all extensions to the C

language.

Step 2: Express Parallelism on GPU

Source:
CUDA C PROGRAMMING GUIDE
PG-02829-001_v9.1 | March 2018

© 2019 Cray, a Hewlett Packard Enterprise company

NVIDIA AMD Description

Threadblock / CTA Work group

• Loosely-coupled, course-grained parallelism
• Collective synchronization prohibited
• Performs best with massive parallelism
• Performance scales with more powerful GPUs

Warp Wavefront
• Fine-grained, independent parallelism
• NVIDIA warp/wavefront size is 32 threads
• AMD warp/wavefront size is 64 threads

Thread Work item
• Fine-grained, lock-step parallelism
• Performs best with stride-1 data accesses
• Performs best with non-divergent control flow

GPU Terminology (Secret Decoder Ring)

© 2019 Cray, a Hewlett Packard Enterprise company

• Specifies fork/join parallelism, like “omp parallel”

• API calls support querying “team num” and “num teams”
• Collective synchronization prohibited (i.e., no barriers)

• Allows mapping directly to GPU threadblocks
• Must appear directly within “omp target”

omp teams

!$omp target
!$omp teams

... ! This code runs on the GPU using multiple “teams”
!$omp end teams
!$omp end target

© 2019 Cray, a Hewlett Packard Enterprise company

• Loop partitioning construct, like “omp do/for”

• Iterations are partitioned across “teams”
• There is no implied barrier at end of loop
• Best practice: combine as “target teams distribute”

omp distribute

!$omp target teams
!$omp distribute
do i=1,n

... ! Iterations are partitioned across “teams”
end do
!$omp end target teams

© 2019 Cray, a Hewlett Packard Enterprise company

OpenMP Construct Mapping to GPU

• teams is required to map to GPU threadblocks, for all implementations
• parallel and simd are inconsistent across implementations

• CCE parallel limitations: called functions are visible; only contains barrier, for with
static schedule, and omp_get_thread_num / omp_get_num_threads queries

• Current Best practice: specify the composite parallel do/for simd
• Long term CCE goal: let users express parallelism with any construct they think makes

sense, and CCE will map to available hardware parallelism

Construct CCE Classic CCE 9.0 Clang Upstream Clang

omp teams • Threadblocks
• Threadblocks+threads

• Threadblocks
• Threadblocks+threads

• Threadblocks

omp parallel • Unused (aggressive
autothreading on GPU)

• Threads (with limitations) • Threads

omp simd • Threads • Threads • Unused

© 2019 Cray, a Hewlett Packard Enterprise company

• Best practice: combine with “teams” to express two-level GPU parallelism

• “teams” maps to GPU threadblocks
• CCE-Classic maps “simd” to GPU threads (skips “parallel for”)
• Clang maps “parallel for” to GPU threads (skips “simd”)

omp parallel for simd

!$omp target teams distribute
parallel for simd
do i=1,n
... ! 2-level parallelism

end do
!$omp end target teams

!$omp target teams distribute
do i=1,n
!$omp parallel for simd
do j=1,n
... ! 2-level parallelism

end do
end do

© 2019 Cray, a Hewlett Packard Enterprise company

16. #pragma omp target teams distribute
17. gG--< for (int i = 0 ; i < 1000 ; i++) {
18. gG a[i] = b[i] + c[i];
19. gG--> }
20. }

$ cc -hmsgs -hlist=m -homp test.c

CC-6405 craycc: ACCEL File = test.c, Line = 17
A region starting at line 17 and ending at line 19 was placed on the accelerator.

CC-6430 craycc: ACCEL File = test.c, Line = 17
A loop was partitioned across the threadblocks and the 128 threads within a

threadblock.

Debugging Construct Mapping

*CCE-Classic only; CCE-Clang is under development

© 2019 Cray, a Hewlett Packard Enterprise company

#pragma omp target data map(from:a) map(alloc:b,c)
{

#pragma omp target teams distribute
for (int i = 0 ; i < 1000 ; i++) {

b[i] = c[i] = 1.0;

#pragma omp target teams distribute
for (int i = 0 ; i < 1000 ; i++)

a[i] = b[i] + c[i];
}

Step 3: Add Data Regions

© 2019 Cray, a Hewlett Packard Enterprise company

• CRAY_ACC_DEBUG

• Recommended values: 1 or 2
• Emits messages for all offloading operations (e.g., allocate, transfer, launch)

• File/line/var info for CCE-Clang coming in CCE 9.1.0

• Debug code with ”host” accelerator target
• All maps/updates become noops

Debugging Data Directives

© 2019 Cray, a Hewlett Packard Enterprise company

$ CRAY_ACC_DEBUG=1 ./a.out

ACC: Transfer 3 items (to acc 12000 bytes, to host 0 bytes) from
test.c:16

ACC: Execute kernel main$ck_L16_1 async(auto) from test.c:16

ACC: Wait async(auto) from test.c:18

ACC: Transfer 3 items (to acc 0 bytes, to host 4000 bytes) from test.c:18

CRAY_ACC_DEBUG=1

© 2019 Cray, a Hewlett Packard Enterprise company

$ CRAY_ACC_DEBUG=2 ./a.out
ACC: Start transfer 3 items from test.c:16
ACC: allocate, copy to acc 'a' (4000 bytes)
ACC: allocate, copy to acc 'b' (4000 bytes)
ACC: allocate, copy to acc 'c' (4000 bytes)
ACC: End transfer (to acc 12000 bytes, to host 0 bytes)
ACC: Execute kernel main$ck_L16_1 blocks:8 threads:128 async(auto) from test.c:16
ACC: Wait async(auto) from test.c:18
ACC: Start transfer 3 items from test.c:18
ACC: copy to host, free 'a' (4000 bytes)
ACC: free 'b' (4000 bytes)
ACC: free 'c' (4000 bytes)
ACC: End transfer (to acc 0 bytes, to host 4000 bytes)

CRAY_ACC_DEBUG=2

© 2019 Cray, a Hewlett Packard Enterprise company

#pragma omp target data map(buffer[:n])
{
#pragma omp target teams distribute

for (int i = 0; i < n; i++) buffer[i] = ...;

#pragma omp target data use_device_ptr(buffer)
{

MPI_Send(buffer,n,...); // requires GPU-aware MPI
// gpu_function(buffer, ...); // Or other GPU-aware function

}
}

MPI Communication on GPU Memory

© 2019 Cray, a Hewlett Packard Enterprise company

void target_nowait_example(int N, double *A, double *B, double *C) {

#pragma omp target enter data map(alloc:A[:N], B[:N], C[:N])

#pragma omp target teams distribute nowait depend(out:A)

for(int i=0; i<N; i++) A[i] = i*4; // Kernel A

#pragma omp target teams distribute nowait depend(out:B)

for(int i=0; i<N; i++) B[i] = i*2; // Kernel B

#pragma omp target teams distribute nowait depend(in:A,B) depend(out:C)

for(int i=0; i<N; i++) C[i] = A[i] + B[i]; // Kernel C

#pragma omp target exit data depend(in:C) map(from:C[:N]) map(delete:A[:N],B[:N])

}

Step 4: Use GPU Asynchronously

© 2019 Cray, a Hewlett Packard Enterprise company

CCE OPENMP
ROADMAP

53

© 2019 Cray, a Hewlett Packard Enterprise company

• 2019 Jun: CCE 9.0
• Alpha CCE Clang OpenMP 4.5 for NVIDIA GPUs

• 2019 Nov: CCE 9.1
• Full CCE Clang OpenMP 4.5 for NVIDIA GPUs

• 2020 Feb: CCE 9.1.x
• Pre-alpha OpenMP 4.5 for AMD GPUs (CORAL-2 only)

• 2020 May: CCE 10.0
• Partial OpenMP 5.0 support

• 2020 Nov: CCE 11.0
• Full OpenMP 5.0 support

CCE OpenMP Roadmap

© 2019 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING
STATEMENTS
This presentation may contain forward-looking statements that involve risks,
uncertainties and assumptions. If the risks or uncertainties ever materialize or the
assumptions prove incorrect, the results of Hewlett Packard Enterprise Company
and its consolidated subsidiaries ("Hewlett Packard Enterprise") may differ
materially from those expressed or implied by such forward-looking statements and
assumptions. All statements other than statements of historical fact are statements
that could be deemed forward-looking statements, including but not limited to any
statements regarding the expected benefits and costs of the transaction
contemplated by this presentation; the expected timing of the completion of the
transaction; the ability of HPE, its subsidiaries and Cray to complete the transaction
considering the various conditions to the transaction, some of which are outside the
parties’ control, including those conditions related to regulatory approvals;
projections of revenue, margins, expenses, net earnings, net earnings per share,
cash flows, or other financial items; any statements concerning the expected
development, performance, market share or competitive performance relating to
products or services; any statements regarding current or future macroeconomic
trends or events and the impact of those trends and events on Hewlett Packard
Enterprise and its financial performance; any statements of expectation or belief;
and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the
transaction described in this presentation may not materialize as expected; that the
transaction may not be timely completed, if at all; that, prior to the completion of the
transaction, Cray’s business may not perform as expected due to transaction-related
uncertainty or other factors; that the parties are unable to successfully implement
integration strategies; the need to address the many challenges facing Hewlett
Packard Enterprise's businesses; the competitive pressures faced by Hewlett
Packard Enterprise's businesses; risks associated with executing Hewlett Packard
Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the
enhancement of existing products and services to meet customer needs and
respond to emerging technological trends; and other risks that are described in our
Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or
updated from time to time in Hewlett Packard Enterprise's other filings with the
Securities and Exchange Commission, including but not limited to our subsequent
Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation
and does not intend to update these forward-looking statements.

55

THANK YOU
Q U E S T I O N S ?

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

© 2019 Cray, a Hewlett Packard Enterprise company

“
“

THE FUTURE
IS SELDOM

THE SAME AS
THE PAST.

SEYMOUR CRAY

