
© 2019 Cray, a Hewlett Packard Enterprise company

Introduction to the

Cray Programming Environment

October 10, 2019

Heidi Poxon

© 2019 Cray, a Hewlett Packard Enterprise company

All materials contained in, attached to, or referenced by this document that are
marked Cray Confidential or with a similar restrictive legend may not be disclosed
in any form without the advance written permission of Cray, a Hewlett Packard
Enterprise company. These data are submitted with limited rights under
Government Contract No. B626589 and Lease Agreement 4000167127.
These data may be reproduced and used by the Government with the express
limitation that they will not, without written permission of Cray, be used for purposes
of manufacture nor disclosed outside the Government.

This notice shall be marked on any reproduction of these data, in whole or in part.

Technical Data Rights

2

© 2019 Cray, a Hewlett Packard Enterprise company

©2016-2019 Cray, a Hewlett Packard Enterprise company. All Rights Reserved.

Portions Copyright Advanced Micro Devices, Inc. (“AMD”) Confidential and Proprietary.

The following are trademarks of Cray, and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray: APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CLUSTERSTOR,CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI, NODEKARE,
and REVEAL. The following system family marks, and associated model number marks, are trademarks of Cray: CS,
CX, XC, XE, XK, XMT, and XT. ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. ThunderX, ThunderX2, and ThunderX3 are trademarks or registered trademarks of Cavium Inc. in the
U.S. and other countries. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Intel, the Intel logo, Intel Cilk, Intel True Scale
Fabric, Intel VTune, Xeon, and Intel Xeon Phi are trademarks or registered trademarks of Intel Corporation in the U.S.
and/or other countries. Lustre is a trademark of Xyratex. NVIDIA, Kepler, and CUDA are trademarks and/or registered
trademarks of NVIDIA Corporation in the U.S. and/or other countries.

Other trademarks used in this document are the property of their respective owners.

Copyright and Trademark Acknowledgements

3

© 2019 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING
STATEMENTS
This presentation may contain forward-looking statements that involve risks,
uncertainties and assumptions. If the risks or uncertainties ever materialize or the
assumptions prove incorrect, the results of Hewlett Packard Enterprise Company
and its consolidated subsidiaries ("Hewlett Packard Enterprise") may differ
materially from those expressed or implied by such forward-looking statements and
assumptions. All statements other than statements of historical fact are statements
that could be deemed forward-looking statements, including but not limited to any
statements regarding the expected benefits and costs of the transaction
contemplated by this presentation; the expected timing of the completion of the
transaction; the ability of HPE, its subsidiaries and Cray to complete the transaction
considering the various conditions to the transaction, some of which are outside the
parties’ control, including those conditions related to regulatory approvals;
projections of revenue, margins, expenses, net earnings, net earnings per share,
cash flows, or other financial items; any statements concerning the expected
development, performance, market share or competitive performance relating to
products or services; any statements regarding current or future macroeconomic
trends or events and the impact of those trends and events on Hewlett Packard
Enterprise and its financial performance; any statements of expectation or belief;
and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the
transaction described in this presentation may not materialize as expected; that the
transaction may not be timely completed, if at all; that, prior to the completion of the
transaction, Cray’s business may not perform as expected due to transaction-related
uncertainty or other factors; that the parties are unable to successfully implement
integration strategies; the need to address the many challenges facing Hewlett
Packard Enterprise's businesses; the competitive pressures faced by Hewlett
Packard Enterprise's businesses; risks associated with executing Hewlett Packard
Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the
enhancement of existing products and services to meet customer needs and
respond to emerging technological trends; and other risks that are described in our
Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or
updated from time to time in Hewlett Packard Enterprise's other filings with the
Securities and Exchange Commission, including but not limited to our subsequent
Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation
and does not intend to update these forward-looking statements.

4

© 2019 Cray, a Hewlett Packard Enterprise company

• Intuitive behavior and best
performance with the least amount of
effort

• Mature programming environment to
develop, debug, analyze, and optimize
applications for production
supercomputing

• Complete developer software stack
with unique functionality built from
close interaction with users

5

Cray PE

Debug

Analyze

Port

Develop

Compile

© 2019 Cray, a Hewlett Packard Enterprise company

Tools
(continued)

Programming
Models

Programming
Languages

Tools Programming
Environments

6

Cray Developer Environment for Cray XC
Optimized
Libraries

Cray Developed
Licensed ISV SWCray added value to 3rd party
3rd party package

Analytics / AI **

AI ToolboxesEnvironment setup DebuggersDistributed Memory

I/O Libraries

Scientific Libraries

DL Frameworks

PrgEnv-Languages

PGAS & Global View

Shared Memory / GPU

Fortran

C

C++

Chapel

Python

R

Cray MPI
SHMEM

OpenMP

UPC
Fortran coarrays

Coarray C++
Chapel

Cray Compiling
Environment
PrgEnv-cray

GNU
PrgEnv-gnu

3rd Party compilers
(Intel, Allinea, PGI)

PrgEnv-???

LAPACK

ScaLAPACK

BLAS

Iterative
Refinement

Toolkit

FFTW

NetCDF

HDF5

gdb4hpc

TotalView

DDT

Performance Analysis

Porting

CrayPAT

Cray Apprentice2

Reveal

CCDB

Cray Urika XC
AI - Analytics

Chapel AI

Cray PE DL
Scalability Plugin

Global Arrays

libsci_acc

Modules

Debugging Support

Abnormal
Termination

Processing (ATP)

STAT

Valgrind4hpc

© 2019 Cray, a Hewlett Packard Enterprise company

Tools
(continued)

Programming
Models

Programming
Languages

Tools Programming
Environments

7

Cray Developer Environment for Cray CS
Optimized
Libraries

Cray Developed
Licensed ISV SWCray added value to 3rd party
3rd party package

Analytics / AI **

AI ToolboxesEnvironment setup DebuggersDistributed Memory Scientific Libraries

DL Frameworks

PrgEnv-Languages

Shared Memory / GPU

C

C++

Chapel OpenMP

LAPACK

ScaLAPACK

Iterative
Refinement

Toolkit

FFTW

Performance Analysis

Porting

CrayPAT

Cray Apprentice2

Reveal

CCDB

Chapel AI

Cray PE DL
Scalability Plugin

libsci_acc

Intel MPI
MVAPICH

Fortran Cray Compiling
Environment
PrgEnv-cray

BLAS gdb4hpc

TotalView

DDT

Cray Urika CS
AI - Analytics

Modules

Valgrind4hpc

Debugging Support

PGAS & Global View

UPC
Fortran coarrays

Coarray C++
Chapel

© 2019 Cray, a Hewlett Packard Enterprise company

• Most important hurdle for widespread adoption of accelerated computing in HPC is programming
difficulty

• Need a single programming model that is portable across machine types
• Portable expression of heterogeneity and multi-level parallelism
• Programming model and optimization should not be significantly difference for “accelerated” nodes

and multi-core x86 processors
• Allow users to maintain a single code base

• Cray’s approach to Accelerator Programming is to provide an ease of use tightly coupled high level
programming environment with compilers, libraries, and tools that can hide the complexity of the system

• Ease of use is possible with
• Compiler making it feasible for users to write applications in Fortran, C, and C++
• Tools to help users port and optimize for hybrid systems
• Auto-tuned scientific libraries

Cray’s PE Vision for Accelerated Computing

8

© 2019 Cray, a Hewlett Packard Enterprise company

• Fortran, C, and C++ compilers

• OpenMP target offload directives to drive compiler optimization

• Compiler optimizations take advantage of accelerator and multi-core X86 hardware appropriately

• Support for new programming frameworks, such as RAJA and Kokkos

• Advanced users can mix HIP or CUDA functions with compiler-generated accelerator code

• Debugger support with DDT, TotalView, or Cray gdb4hpc & CCDB

• Scientific Libraries tuned to take advantage of multi-core and accelerators appropriately

• Cray Reveal, built upon compiler knowledge of the application

• Scoping tool to help users port and optimize applications

• Cray Performance tools for whole-program view of performance

• Cray MPI GPU to GPU for direct communications between GPUs on node and off node

9

Cray PE Technology Applied to Accelerators

© 2019 Cray, a Hewlett Packard Enterprise company

Environment
Setup

10

© 2019 Cray, a Hewlett Packard Enterprise company

• Modules simplify build environment
• Complexity of compile and link lines (-h –I –l –L) reduced

• Multiple product versions, compilers, and compiler versions available on system at the
same time offers more flexibility and convenience

• Product agnostic drivers (cc, CC, ftn) are used to compile for supported Programming
Environments

• Customer-integrated and Cray libraries share the same driver interface

• Support available to plug 3rd party software into Cray software environment (craypkg-
gen)

11

Programmability Focused Environment

© 2019 Cray, a Hewlett Packard Enterprise company

Which Software Versions Are Available?

user@login:~> module avail cce
--------------------------- /opt/cray/pe/modulefiles ---------------------------
cce/8.7.0 cce/8.7.3 cce/8.7.6 cce/8.7.9
cce/8.7.1 cce/8.7.4 cce/8.7.7 cce/8.7.10
cce/8.7.2 cce/8.7.5 cce/8.7.8 cce/9.0.0(default)

user@login:~> module avail PrgEnv
--------------------------- /opt/cray/pe/modulefiles ---------------------------
PrgEnv-cray/6.0.3 PrgEnv-gnu/6.0.3 PrgEnv-intel/6.0.3
PrgEnv-cray/6.0.4 PrgEnv-gnu/6.0.4 PrgEnv-intel/6.0.4
PrgEnv-cray/6.0.5(default) PrgEnv-gnu/6.0.5(default) PrgEnv-intel/6.0.5(default)

user@login:~> module -S avail fftw
--------------------------- /opt/cray/pe/modulefiles ---------------------------
cray-fftw/3.3.6.1 cray-fftw/3.3.6.4 cray-fftw/3.3.8.2
cray-fftw/3.3.6.2 cray-fftw/3.3.6.5 cray-fftw/3.3.8.3(default)
cray-fftw/3.3.6.3 cray-fftw/3.3.8.1 fftw/2.1.5.9

12

© 2019 Cray, a Hewlett Packard Enterprise company

Targeting Processors / Accelerators

13

user@login:~> module avail craype

-------------------------- /opt/cray/pe/craype/2.6.1/modulefiles ----------------
craype-accel-host craype-hugepages2M craype-intel-knc
craype-accel-nvidia20 craype-hugepages4M craype-ivybridge
craype-accel-nvidia35 craype-hugepages8M craype-mic-knl
craype-accel-nvidia52 craype-hugepages16M craype-network-aries
craype-accel-nvidia60 craype-hugepages32M craype-network-none
craype-broadwell craype-hugepages64M craype-sandybridge
craype-haswell craype-hugepages128M craype-x86-cascadelake
craype-hugepages1G craype-hugepages256M craype-x86-skylake
craype-hugepages2G craype-hugepages512M

--------------------------------- /opt/cray/pe/modulefiles ----------------------
craype/2.6.1(default) craype-dl-plugin-py3/19.09.1(default)
craype-dl-plugin-py2/19.09.1(default)

© 2019 Cray, a Hewlett Packard Enterprise company

• To access a different compiler:
• Load or swap to the corresponding Programming Environment (PE) module

• PrgEnv-cray for CCE
• PrgEnv-intel for Intel
• PrgEnv-gnu for GNU

• Once one of these is loaded, you can then select a compiler version
• CCE: module avail cce
• GNU: module avail gcc

• With PE 19.06 the default linking for all compilers (CCE, Intel, GCC, etc.) is now dynamic
• Static linking still a non-default option, where supported

Choosing Different Compilers on Cray XC

14

© 2019 Cray, a Hewlett Packard Enterprise company

• Cray Systems come with compiler wrappers to simplify building parallel applications (similar the mpicc/mpif90)
• Fortran Compiler: ftn
• C Compiler: cc
• C++ Compiler: CC

• Using these wrappers ensures that your code is built for the compute nodes and linked against important libraries
• Cray MPT (MPI, Shmem, etc.)
• Cray LibSci (BLAS, LAPACK, etc.)
• …

• Do not call the Cray, Intel, GNU compilers directly

• Cray Compiler wrappers try to hide the complexities of using the proper header files and libraries

15

Using the Compilers

© 2019 Cray, a Hewlett Packard Enterprise company

Release Notes Easily Accessible

user@login:~> module help cce

----------- Module Specific Help for 'cce/9.0.0' ------------------

The modulefile, cce, defines the system paths and environment
variables needed to run the Cray Compile Environment.

Type "module avail cce" to see if other versions of this product
are available on this system. Use "module switch" to change versions.

Cray Compiling Environment (CCE) 9.0.0
==

Release Date:

June 20, 2019

Purpose:

CCE 9.0.0 provides Fortran, C, and C++ compilers for Cray XC systems and Cray CS systems.

- With this release, the default C and C++ compilers are based on Clang/LLVM
- The previous C and C++ compilers are also provided and referred to as Cray Classic C and C++
- See S-5212 Cray Compiling Environment Release Overview (9.0) for additional information

The following key enhancements are included in this CCE release:
- Dynamic linking is the default link mode

- This change is in craype included with the June PE (19.06) release
- Applies to all compilers (CCE, Intel, GCC, etc.) when the new craype is loaded
- Override the default with the -static flag on the command line,

or by setting CRAYPE_LINK_TYPE=static in the environment
- C++17 support for both Classic and Clang-based C and C++ compilers
-...

16

© 2019 Cray, a Hewlett Packard Enterprise company

Cray MPI

17

© 2019 Cray, a Hewlett Packard Enterprise company

• ANL MPICH3.2 implementation base

• Fully compliant with the MPI-3.1 Specification

• Optimize for scale in the following areas: I/O, collectives, point-to-point, one-sided communication

• Optimization examples
• SMP-aware collectives
• High performance single-copy on-node communication via Cray’s XPMEM
• MPI rank reordering
• Supports GPU to GPU direct communication
• Ran with 2,001,150 ranks on Trinity in 2016

• Highly tunable through environment variables
• Defaults should generally be best, but some cases benefit from fine tuning

Cray MPI Overview

© 2019 Cray, a Hewlett Packard Enterprise company

• By default, MPI uses 2M hugepages for Aries GNI mailboxes internally

• Used even if user didn't select hugepages or if user selected different hugepage
size

• User can change the 2M size by setting the MPICH_GNI_HUGEPAGE_SIZE
environment variable

• Other buffers that get allocated within MPI (e.g. temporary buffers for collectives)
will abide by the hugepage module the user has selected

Example Environment Variable Control

19

© 2019 Cray, a Hewlett Packard Enterprise company

Specifies the hugepage size in bytes

that will be used for the GNI internal mailbox memory. The

default size is 2MB. Jobs that scale to high process counts

and have a high connectivity pattern may benefit from using

a larger hugepage size for this memory, as this can reduce

the number of Aries PTE misses. If setting

MPICH_GNI_HUGEPAGE_SIZE to a larger value, you may also want

to increase the MPICH_GNI_MBOXES_PER_BLOCK value.

The supported values are 2M, 4M, 8M, 16M, 32M, 64M, 128M,

256M, and 512M. For CLE 6.0.UP05 and later, values of 1G and

2G are also supported.

Default: 2M

See the MPI man page for environment variable descriptions

MPICH_GNI_HUGEPAGE_SIZE

20

© 2019 Cray, a Hewlett Packard Enterprise company

• Integrated into the Cray Programming Environment

• Compiler drivers manage compile flags and linking automatically
• Profiling through Cray performance tools

• MPICH ABI compatibility
• Programs built with other MPICH ABI compatible vendors like Intel MPI can

get native Aries performance without recompiling
• http://wiki.mpich.org/mpich/index.php/ABI_Compatibility_Initiative
• cray-mpich-abi module exposes this feature

Interaction with Cray PE and other MPI Libraries

http://wiki.mpich.org/mpich/index.php/ABI_Compatibility_Initiative

© 2019 Cray, a Hewlett Packard Enterprise company

Cray
Performance
Tools

22

© 2019 Cray, a Hewlett Packard Enterprise company

Cray Performance Tools
• Reduce the time investment associated

with porting and tuning applications on
Cray systems

• Analyze whole-program behavior across
many nodes to identify critical
performance bottlenecks within a
program

• Improve profiling experience by using
simple and/or advanced interfaces for a
wealth of capability that targets analyzing
the largest HPC jobs

23

© 2019 Cray, a Hewlett Packard Enterprise company 24

Cray Tools Provide Various Levels of Detail

© 2019 Cray, a Hewlett Packard Enterprise company

• Lite modes: simple interface for convenience

• Advanced interface for in-depth performance investigation and tuning assistance

• Both offer:

• Whole program analysis across many nodes

• Indication of causes of problems

• Ability to easily switch between the two interfaces

Two Modes of Use

25

Load module Build program Run

© 2019 Cray, a Hewlett Packard Enterprise company

Cray Performance Tools support the following compilers

• Cray (CCE), Intel, GCC, and Arm Allinea compilers on Cray XC systems

• AMD compiler support coming next year

• Cray (CCE) compiler on Cray CS systems

What About Different Compilers?

26

© 2019 Cray, a Hewlett Packard Enterprise company

• user@login> module load perftools-lite

• Build program

• Run program

• View report sent to STDOUT (and .rpt file in experiment directory)
• Example data directory: stencil_order+49144-225s/

Using the Simple Interface

27

© 2019 Cray, a Hewlett Packard Enterprise company

Find Top Bottlenecks

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 463.147240 | -- | -- | 21621.0 |Total
|--
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI
||---
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND
||===
| 43.3% | 200.474690 | -- | -- | 32.0 |USER
||---
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_
||===
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC
||---
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)
||===
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL

28

MPI utilization Observation:

The time spent processing MPI
communications is relatively high.
Functions and callsites responsible for
consuming the most time can be found in
the table generated by
pat_report -O callers+src

(within the MPI group)

© 2019 Cray, a Hewlett Packard Enterprise company

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 1.957703 | -- | -- | 42,970.8 |Total
|--
| 60.0% | 1.174021 | -- | -- | 3,602.0 |USER
||---
|| 30.8% | 0.603850 | 0.176924 | 23.0% | 1,198.0 |function3_
|| 19.2% | 0.375117 | 0.128748 | 26.0% | 1,200.0 |function2_
|| 9.1% | 0.178111 | 0.081880 | 32.0% | 1,200.0 |function1_
||===
| 36.0% | 0.704928 | -- | -- | 9,613.0 |MPI_SYNC
||---
|| 25.8% | 0.505174 | 0.385130 | 76.2% | 9,596.0 |mpi_barrier_(sync)
|| 10.2% | 0.199537 | 0.199518 | 100.0% | 1.0 |mpi_init_(sync)
||===
| 4.0% | 0.078736 | -- | -- | 29,754.8 |MPI
||---
|| 2.3% | 0.045351 | 0.003531 | 7.3% | 9,596.0 |MPI_BARRIER
|| 1.1% | 0.021520 | 0.051295 | 71.6% | 8,756.9 |MPI_ISEND
|==

Find Any Program Load Imbalance

29

Look for function execution
imbalance as well as late arrivers
to synchronization points

Look for function execution
imbalance as well as late arrivers
to synchronization points

© 2019 Cray, a Hewlett Packard Enterprise company

Reduce Communication Distance
MPI Grid Detection:

There appears to be point-to-point MPI communication in a 96 X 8
grid pattern. The 52% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%

of Total
Bytes/PE

Custom 2.385e+09 95.55% 3
SMP 1.880e+09 75.30% 1
Fold 1.373e+06 0.06% 2

RoundRobin 0.000e+00 0.00% 0

30

© 2019 Cray, a Hewlett Packard Enterprise company

Use Auto-Generated MPI Rank Order File
The 'USER_Time_hybrid' rank
order in this file targets
nodes with multi-core

processors, based on Sent
Msg Total Bytes collected
for:

#

Program:
/lus/nid00023/malice/craypat
/WORKSHOP/bh2o-
demo/Rank/sweep3d/src/sweep3
d

Ap2 File:
sweep3d.gmpi-u.ap2

Number PEs: 768

Max PEs/Node: 16

#

To use this file, make a
copy named MPICH_RANK_ORDER,
and set the

environment variable
MPICH_RANK_REORDER_METHOD to
3 prior to

executing the program.

#

0,532,64,564,32,572,96,540,8
,596,72,524,40,604,24,588

104,556,16,628,80,636,56,620
,48,516,112,580,88,548,120,6
12

1,403,65,435,33,411,97,443,9
,467,25,499,105,507,41,475

73,395,81,427,57,459,17,419,
113,491,49,387,89,451,121,48
3

6,436,102,468,70,404,38,412,
14,444,46,476,110,508,78,500

86,396,30,428,62,460,54,492,
118,420,22,452,94,388,126,48
4

129,563,193,531,161,571,225,
539,241,595,233,523,249,603,
185,555

153,587,169,627,137,635,201,
619,177,515,145,579,209,547,
217,611

7,405,71,469,39,437,103,413,
47,445,15,509,79,477,31,501

111,397,63,461,55,429,87,421
,23,493,119,389,95,453,127,4
85

134,402,198,434,166,410,230,
442,238,466,174,506,158,394,
246,474

190,498,254,426,142,458,150,
386,182,418,206,490,214,450,
222,482

128,533,192,541,160,565,232,
525,224,573,240,597,184,557,
248,605

168,589,200,517,152,629,136,
549,176,637,144,621,208,581,
216,613

5,439,37,407,69,447,101,415,
13,471,45,503,29,479,77,511

53,399,85,431,21,463,61,391,
109,423,93,455,117,495,125,4
87

2,530,34,562,66,538,98,522,1
0,570,42,554,26,594,50,602

18,514,74,586,58,626,82,546,
106,634,90,578,114,618,122,6
10

135,315,167,339,199,347,259,
307,231,371,239,379,191,331,
247,299

175,363,159,323,143,355,255,
291,207,275,183,283,151,267,
215,223

133,406,197,438,165,470,229,
414,245,446,141,478,237,502,
253,398

157,510,189,462,173,430,205,
390,149,422,213,454,181,494,
221,486

130,316,260,340,194,372,162,
348,226,308,234,380,242,332,
250,300

202,364,186,324,154,356,138,
292,170,276,178,284,210,218,
268,146

4,535,36,543,68,567,100,527,
12,599,44,575,28,559,76,607

52,591,20,631,60,639,84,519,
108,623,92,551,116,583,124,6
15

3,440,35,432,67,400,99,408,1
1,464,43,496,27,472,51,504

19,392,75,424,59,456,83,384,
107,416,91,488,115,448,123,4
80

132,401,196,441,164,409,228,
433,236,465,204,473,244,393,
188,497

252,505,140,425,212,457,156,
385,172,417,180,449,148,489,
220,481

131,534,195,542,163,566,227,
526,235,574,203,598,243,558,
187,606

251,590,211,630,179,638,139,
622,155,550,171,518,219,582,
147,614

761,660,737,652,705,668,745,
692,673,700,641,684,713,644,
753,724

729,732,681,756,721,716,764,
676,697,748,689,657,740,665,
649,708

760,528,736,536,704,560,744,
520,672,568,712,592,752,552,
640,600

728,584,680,624,720,512,696,
632,688,616,664,544,608,656,
648,576

762,659,738,651,706,667,746,
643,714,691,674,699,754,683,
730,723

722,731,763,658,642,755,739,
675,707,650,682,715,698,666,
690,747

257,345,265,313,281,305,273,
337,609,369,577,377,617,329,
513,529

545,297,633,361,625,321,585,
537,601,289,553,353,593,521,
569,561

256,373,261,341,264,349,280,
317,272,381,269,309,285,333,
277,365

352,301,320,325,288,357,328,
304,360,312,376,293,296,368,
336,344

258,338,266,346,282,314,274,
370,766,306,710,378,742,330,
678,362

646,298,750,322,718,354,758,
290,734,662,686,670,726,702,
694,654

262,375,263,343,270,311,271,
351,286,319,278,342,287,350,
279,374

294,318,358,383,359,310,295,
382,326,303,327,367,366,335,
302,334

765,661,709,663,741,653,711,
669,767,655,743,671,749,695,
679,703

677,727,751,693,647,701,717,
687,757,685,733,725,719,735,
645,759

31

© 2019 Cray, a Hewlett Packard Enterprise company

Table 3: Memory Bandwidth by Numanode (limited entries shown)

Memory | Local | Remote | Memory | Memory | Numanode
Traffic | Memory | Memory | Traffic | Traffic | Node Id=[max3,min3]
GBytes | Traffic | Traffic | GBytes | / | PE=HIDE

| GBytes | GBytes | / Sec | Nominal | Thread=HIDE
| | | | Peak |

|--
| 184.47 | 173.59 | 10.89 | 15.93 | 20.7% | numanode.0
||---
|| 183.50 | 173.59 | 9.91 | 15.86 | 20.7% | nid.63
|| 182.61 | 172.40 | 10.21 | 15.77 | 20.5% | nid.61
|| 178.55 | 167.75 | 10.80 | 15.44 | 20.1% | nid.71
|| 178.10 | 168.14 | 9.96 | 15.40 | 20.1% | nid.62
|| 178.08 | 168.07 | 10.01 | 15.40 | 20.1% | nid.68
|| 178.01 | 167.20 | 10.82 | 15.38 | 20.0% | nid.70
||===
| 60.36 | 14.73 | 45.62 | 6.65 | 8.7% | numanode.1
||---
|| 60.36 | 14.73 | 45.62 | 6.65 | 8.7% | nid.63
|| 59.88 | 14.33 | 45.55 | 6.60 | 8.6% | nid.62
|| 59.48 | 14.19 | 45.29 | 6.56 | 8.5% | nid.68
|| 58.78 | 13.70 | 45.08 | 6.48 | 8.4% | nid.70
|| 58.67 | 13.87 | 44.81 | 6.47 | 8.4% | nid.69
|| 58.53 | 13.86 | 44.67 | 6.46 | 8.4% | nid.71
|==

32

View Memory Traffic per NUMA Domain

Table 3: Memory Bandwidth by Numanode (limited entries shown)

Memory | Local | Remote | Memory | Memory | Numanode
Traffic | Memory | Memory | Traffic | Traffic | Node Id=[max3,min3]
GBytes | Traffic | Traffic | GBytes | / | PE=HIDE

| GBytes | GBytes | / Sec | Nominal |
| | | | Peak |

|--
| 172.95 | 171.48 | 1.48 | 8.75 | 11.4% | numanode.0
||---
|| 172.77 | 171.48 | 1.30 | 8.90 | 11.6% | nid.68
|| 172.09 | 170.61 | 1.48 | 9.02 | 11.7% | nid.63
|| 171.20 | 169.93 | 1.27 | 9.71 | 12.6% | nid.62
|| 162.51 | 161.07 | 1.43 | 8.26 | 10.8% | nid.71
|| 162.28 | 160.82 | 1.46 | 8.22 | 10.7% | nid.72
|| 161.75 | 160.29 | 1.46 | 8.19 | 10.7% | nid.70
||===
| 168.69 | 166.81 | 1.89 | 8.53 | 11.1% | numanode.1
||---
|| 168.69 | 166.81 | 1.89 | 8.67 | 11.3% | nid.62
|| 167.74 | 166.03 | 1.71 | 8.61 | 11.2% | nid.63
|| 166.66 | 164.88 | 1.78 | 8.67 | 11.3% | nid.61
|| 161.68 | 160.07 | 1.61 | 8.17 | 10.6% | nid.71
|| 161.60 | 159.99 | 1.62 | 8.23 | 10.7% | nid.70
|| 157.32 | 156.01 | 1.31 | 8.72 | 11.4% | nid.72
|==

MPI MPI + OpenMP

© 2019 Cray, a Hewlett Packard Enterprise company

• pat_view takes multiple
experiment directories as input

• Helpful when assessing
performance differences
between runs

• Good for function or overall
program scaling analysis

Check Scaling

33

© 2019 Cray, a Hewlett Packard Enterprise company

View Application Profile with GPU Information

Time CPU waits
while GPU executes

Data transfer to and
from the GPU

34

© 2019 Cray, a Hewlett Packard Enterprise company 35

Focus on Accelerator Statistics
Table 1: Time and Bytes Transferred for Accelerator Regions

Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree

Time% | Time | Time | In | Out | | PE=HIDE
| | | (MBytes) | (MBytes) | |

100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |Total
|---
-
| 100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |lbm3d2p_d_

| | | | | | | lbm3d2p_d_.ACC_DATA_REGION@li.104
|||---
-
3|| 63.5% | 1.747 | 1.747 | 2799.192 | -- | 1 |lbm3d2p_d_.ACC_COPY@li.104

3|| 22.1% | 0.609 | 0.088 | 12.304 | 12.304 | 36 |streaming_
||||--
-
4||| 20.6% | 0.566 | 0.046 | 12.304 | 12.304 | 27 |streaming_exchange_

5||| | | | | | | streaming_exchange_.ACC_DATA_REGION@li.526

6||| 18.8% | 0.517 | -- | -- | -- | 1 |
streaming_exchange_.ACC_DATA_REGION@li.526(exclusive)

4||| 1.6% | 0.043 | 0.042 | -- | -- | 9 |streaming_.ACC_DATA_REGION@li.907
5||| 1.1% | 0.031 | 0.031 | -- | -- | 4 | streaming_.ACC_REGION@li.909

Host time (wallclock)
Time spent on GPU (wallclock)
Data copies to and from GPU
Time to copy data

© 2019 Cray, a Hewlett Packard Enterprise company

Analyze CPU and GPU Overlap
CPU call stack:

Bar represents CPU function
or region: Hover over bar to
get function name, start and

end time

Bar represents GPU
stream event: Hover
over bar to get event

info

Navigation
assistance

Program histogram
of wait, copy kernel

time
36

© 2019 Cray, a Hewlett Packard Enterprise company

Adding OpenMP
with Cray Reveal

37

© 2019 Cray, a Hewlett Packard Enterprise company 38

Reveal

• Reduce effort associated with
adding OpenMP to MPI programs

• Get insight into optimizations
performed by the Cray compiler

• Add OpenMP as a first step to
parallelize loops that will target
GPUs

© 2019 Cray, a Hewlett Packard Enterprise company

subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

39

The Problem – How Do I Parallelize This Loop?
● How do I know this is a good loop to parallelize?
● What prevents me from parallelizing this loop?
● Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
rlft,prgh,urgh,rrgh)

call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
plft,ulft,rlft pmid umid)

call evolve(umid, pmid) ß contains more calls

call remap ß contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ß contains more calls

return
end

© 2019 Cray, a Hewlett Packard Enterprise company

Gather loop statistics using the Cray performance tools and the Cray Compiling
Environment (CCE) to determine which loops have the most work

• Helps identify high-level serial loops to parallelize

• Based on runtime analysis, approximates how much work exists within a loop

40

Loop Work Estimates

© 2019 Cray, a Hewlett Packard Enterprise company 41

Create Loop Profile to Find Tuning Candidates

Inclusive and Exclusive Time in Loops

Loop | Loop Incl | Loop Hit | Loop | Loop | Loop | Function=/.LOOP[.]
Incl | Time | | Trips | Trips | Trips | PE=HIDE

Time% | | | Avg | Min | Max |
|---
| 99.4% | 333.895923 | 1 | 500.0 | 500 | 500 | les3d_.LOOP.3.li.216
| 98.7% | 331.721721 | 500 | 2.0 | 2 | 2 | les3d_.LOOP.4.li.272
| 26.5% | 89.032566 | 1,000 | 96.0 | 96 | 96 | fluxk_.LOOP.1.li.28
| 24.6% | 82.681435 | 96,000 | 97.0 | 97 | 97 | fluxk_.LOOP.2.li.29
| 24.2% | 81.356609 | 1,000 | 96.0 | 96 | 96 | fluxj_.LOOP.1.li.28
| 22.5% | 75.770180 | 96,000 | 97.0 | 97 | 97 | fluxj_.LOOP.2.li.29
| 22.5% | 75.458432 | 1,000 | 96.0 | 96 | 96 | fluxi_.LOOP.1.li.21
| 22.5% | 75.453469 | 96,000 | 96.0 | 96 | 96 | fluxi_.LOOP.2.li.22
| 18.9% | 63.574836 | 9,312,000 | 96.0 | 96 | 96 | visck_.LOOP.1.li.344
| 17.1% | 57.529187 | 9,312,000 | 96.0 | 96 | 96 | viscj_.LOOP.1.li.340
| 15.7% | 52.794857 | 9,216,000 | 97.0 | 97 | 97 | visci_.LOOP.1.li.782
| 5.0% | 16.924522 | 1,000 | 99.0 | 99 | 99 | extrapi_.LOOP.1.li.128

Use with compiler listing to
understand compiler

generated optimizations

© 2019 Cray, a Hewlett Packard Enterprise company 42

View Source and Optimization Information

© 2019 Cray, a Hewlett Packard Enterprise company

Review Scoping Results

Parallelization
inhibitor messages

are provided to
assist user with

analysis

Loops with scoping
information are

flagged. Red needs
user assistance

43

© 2019 Cray, a Hewlett Packard Enterprise company 44

Review Scoping Results (continued)

© 2019 Cray, a Hewlett Packard Enterprise company 45

View Loops through Call Chain

Loop
instances

Loop
traceback

© 2019 Cray, a Hewlett Packard Enterprise company

! Directive inserted by Cray Reveal. May be incomplete.
!$OMP parallel do default(none) &
!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &
!$OMP& xa,xa0) &
!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &
!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP& ekin) &
!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP& recv1,send2,zdy,zxc,zya)
do k = 1, ks
do i = 1, isy
radius = zxc(i+mypey*isy)

! Put state variables into 1D arrays, padding with 6 ghost zones
do m = 1, npey
do j = 1, js
n = j + js*(m-1) + 6
r(n) = recv1(1,k,j,i,m)
p(n) = recv1(2,k,j,i,m)
u(n) = recv1(4,k,j,i,m)
v(n) = recv1(5,k,j,i,m)
w(n) = recv1(3,k,j,i,m)
f(n) = recv1(6,k,j,i,m)
enddo
enddo

do j = 1, jmax
n = j + 6

46

Generate OpenMP Directives

Reveal generates OpenMP
directive with illegal clause
marking variables that need

addressing

© 2019 Cray, a Hewlett Packard Enterprise company 47

Validate User Inserted Directives

User inserted directive
with mis-scoped

variable ‘n’

© 2019 Cray, a Hewlett Packard Enterprise company 48

Look For Vectorization Opportunities

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

© 2019 Cray, a Hewlett Packard Enterprise company

Cray Debugging
Tools

49

© 2019 Cray, a Hewlett Packard Enterprise company

• STAT - Stack Trace Analysis Tool
• Scalable generation of a single merged stack

backtrace for the application
• GUI based tool (stat-gui/stat-view) along with cli

tools (stat-cl)
• Gain insight into application behavior at a function

level

• ATP - Abnormal Termination Processing
• Scalable core file generation and analysis when

application crashes
• Generates a merged stack backtrace akin to stat
• Selection algorithm to dump unique core files

• gdb4hpc
• Conventional CLI based interactive parallel debugger
• Look and feel of gdb – syntax is inspired by gdb!
• Debug your application at scale

• CCDB - Comparative debugging
• A data-centric paradigm
• Compare two applications side-by-side

• Focus on the data – not state and internal
operations

• GUI tool that interacts with gdb4hpc

• Valgring4hpc
• Parallel valgrind based debugging tool (memcheck)
• Aids in detection of memory leaks and errors in

parallel applications
• Aggregates like errors across PEs/threads

50

Scalable Debugging on Cray Systems
• Cray’s focus is to build tools around traditional debuggers with innovative techniques for productivity and scalability

• Scalable Solutions based on MRNet from University of Wisconsin

© 2019 Cray, a Hewlett Packard Enterprise company

Stack Trace Merge Example

51

© 2019 Cray, a Hewlett Packard Enterprise company

2D-Trace/Space Analysis

Application

Application

Application

Application

Application

© 2019 Cray, a Hewlett Packard Enterprise company

• ATP signal handler runs within an application to catch fatal errors
• It handles the following signals:

• SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU,
SIGXFSZ

• Setting the environment variables MPICH_ABORT_ON_ERROR and
SHMEM_ABORT_ON_ERROR will cause a signal to be thrown and captured for MPI and
SHMEM fatal errors

• ATP daemon running on the compute node captures signals, starts termination processing
• All application processes are notified
• Generates a stacktrace
• Creates a single merged stack trace file

• The stack trace file is viewed with the stat-view tool

ATP

53

© 2019 Cray, a Hewlett Packard Enterprise company

• ATP is able to hold a dying application in stasis in order to allow the user to attach to it
with a debugger

• To do so, set the ATP_HOLD_TIME environment variable to the number of minutes
desired

• Once attached, the debugging session can last as long as the batch system allows
• Which in turn depends on the compute node resources you requested when you

began your session
• Use ATP_HOLD_TIME to define the time you need to attach to the application, not

the total time needed for the debugging session

• If ATP_HOLD_TIME is set, core dumping is disabled

ATP Can Hold Dying Application

54

© 2019 Cray, a Hewlett Packard Enterprise company

• Why is a tool like this necessary?
• Code developers are already familiar with gdb
• Commercial debuggers are GUI based
• Using gdb on each individual PE/thread is painful

• How to attach gdb?
• How to communicate with gdb?

• Focus on delivering a tool with scalability in mind

• Traditional parallel debugger
• Compilers: CCE, GNU, Intel, clang/flang
• Languages: C, C++, Fortran, UPC
• Programming models: MPI, SHMEM, OpenMP, pthreads
• Provides a command set similar to gdb

• Built on top of gdb
• Have a gdb instance for each PE/thread
• Glued together with a communication tree
• gdb was modified to support Fortran and UPC

55

gdb4hpc

© 2019 Cray, a Hewlett Packard Enterprise company

• user@login> module load gdb4hpc
• user@login> man gdb4hpc

• Recommend compiling with -g -O0 for best experience

56

Using gdb4hpc

user@login:~> gdb4hpc

gdb4hpc 3.0 - Cray Line Mode Parallel Debugger
With Cray Comparative Debugging Technology.
Copyright 2007-2018 Cray Inc. All Rights Reserved.
Copyright 1996-2016 University of Queensland. All Rights Reserved.

Type "help" for a list of commands.
Type "help <cmd>" for detailed help about a command.
dbg all>

© 2019 Cray, a Hewlett Packard Enterprise company

gdb4hpc Example
$ gdb4hpc
…

dbg all> break jacobi
App1{0..127}: Breakpoint 1: file himeno.f, line 209.

dbg all> c
App1{0..127}: Breakpoint 1, jacobi at himeno.f:209

dbg all> l
App1{0..127}: 209 subroutine jacobi(nn,gosa)
App1{0..127}: 210 C***
App1{0..127}: 211 IMPLICIT NONE
App1{0..127}: 212 C
App1{0..127}: 213 include 'mpif.h'
App1{0..127}: 214 include 'param.h'
App1{0..127}: 215 C
App1{0..127}: 216 integer :: nn,i,j,k,loop,ierr

dbg all> backtrace
App1{0..127}: #0 0x0000000000402020 in jacobi at himeno.f:209
App1{0..127}: #1 0x00000000004012de in himenobmtxp at himeno.f:91

dbg all> print npe
App1{0..127}: 128

dbg all> p jmax
App1{0..3,12..19,28..35,44..51,60..67,76..83,92..99,108..115,124..127}: 129
App1{4..11,20..27,36..43,52..59,68..75,84..91,100..107,116..123}: 130

57

© 2019 Cray, a Hewlett Packard Enterprise company

• What is comparative debugging?
• Data centric approach instead of the traditional control-centric paradigm
• Two applications, same data - simultaneous execution of both
• Key idea: The data should match
• Quickly isolate deviating variables

• Comparative debugging tool
• NOT a traditional debugger!
• Assists with comparative debugging

• Focus on data – not state and internal operations
• Creates automatic comparisons
• Based on symbol name and type
• Allows user to create own comparisons
• Error and warning epsilon tolerance
• Scalable

• How does this help me?
• Algorithm re-writes
• Language ports
• Different libraries/compilers
• New architectures

Comparative Debugger

58

© 2019 Cray, a Hewlett Packard Enterprise company

• Scalable Valgrind tool for analyzing parallel applications

• Focus: parallelizing memcheck and helgrind tools

• Memory leak/error checking, thread safety checking, bounds
checking

• Performs analysis at every application rank and removes duplicates
matching output blocks to provide concise summaries of program
behavior

• Available via module
• user@login> module load valgrind4hpc

59

Valgrind4hpc

© 2019 Cray, a Hewlett Packard Enterprise company

Cray PE DL
Scalabil i ty Plugin

60

© 2019 Cray, a Hewlett Packard Enterprise company

• Goal was to design a solution for scaling TensorFlow (specifically synchronous SGD) to
significantly larger node counts than existing methods allowed

• Should require minimal changes to user training scripts and provide a more
friendly user experience

• Achieve the best possible TensorFlow performance on Cray Systems

• Maintain accuracy for a given number of steps and hyper-parameter setup allowing for
significantly reduced time-to-accuracy through scaling

• Can run on a range of x86-64 CPUs and currently supports Nvidia GPUs

• Ideally have a portable solution that would work with other deep learning frameworks

The Cray PE DL Scalability Plugin Overview

61

© 2019 Cray, a Hewlett Packard Enterprise company

• Available on Cray XC and CS systems
• user@login> module load craype-dl-plugin-py3

• Plugin has both a C and Python 3 API and supports multiple DL datatypes

• Can be used on single and multi-GPU nodes of various topologies

• Can be used with popular DL frameworks or integrated into a project via its API

• Compatible with TensorFlow and PyTorch frameworks

62

Using the Plugin

© 2019 Cray, a Hewlett Packard Enterprise company

▪ Achieved 77% scaling efficiency at
8192 nodes on Cori
▪ Fully synchronous SGD
▪ Speedup of 6324X

▪ Measure walltime per epoch
(throughput)

▪ Captures end-to-end capability
including:
▪ Single-node computation

▪ Training and validation
▪ Communication
▪ I/O

63

CosmoFlow Scaling Performance

Note: global batch size = # nodes
(local batch size of 1)

© 2019 Cray, a Hewlett Packard Enterprise company

639.8
img/s 1262.5

img/s

2524.8
img/s

2 GPUs 4 GPUs 8 GPUs

ResNet-50

64

Cray DL Plugin Perf. vs. Horovod on CS-Storm

260.2
img/s

512.4
img/s

1025.3
img/s

1

1.05

1.1

1.15

1.2

1.25

2 GPUs 4 GPUs 8 GPUs

Sp
ee

du
p

re
la

tiv
e

to
 H

or
ov

od

ResNet-152

* TensorFlow 1.13.1 with tf_cnn_benchmarks, minibatch size = 32, synthetic data. Horovod 0.16.

Labels are aggregate images/sec

Higher on the y-axis is better

219.4
img/s

433.6
img/s

863.0
img/s

2 GPUs 4 GPUs 8 GPUs

Inception v4

Sp
ee

du
p

=
1

is
 e

qu
iv

al
en

t p
er

f.

Q U E S T I O N S ?

