
AMD Tools Overview
René van Oostrum, Scott Moe, Damon McDougall, Paul Bauman

Outline
 Tools for porting C or C++ CUDA codes to HIP
 Calling HIP from Fortran
 Profiling tools

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |2

Enter HIPify
 AMD provides ‘Hipify’ tools to automatically convert most CUDA code⁃ Hipify-perl⁃ Hipify-clang

 Good resource to help with porting: https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

 In practice, large portions of many HPC codes have been automatically Hipified:⁃ ~90% of CUDA code in CORAL-2 HACC⁃ ~80% of CUDA code in CORAL-2 PENNANT⁃ ~80% of CUDA code in CORAL-2 QMCPack⁃ ~95% of CUDA code in CORAL-2 Laghos
The remaining code requires programmer intervention

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |3

Hipify tools
 Hipify-perl:⁃ Easy to use –point at a directory and it will attempt to hipify CUDA code⁃ Very simple string replacement technique: may make incorrect translations

sed -e ‘s/cuda/hip/g’ (e.g., cudaMemcpy becomes hipMemcpy)⁃ Recommended for quick scans of projects
 Hipify-clang:⁃ Requires CLANG compiler⁃ More robust translation of the code ⁃ Uses clang to parse files and perform semantic translation⁃ Can generate warnings and assistance for code for additional user analysis⁃ High quality translation, particularly for cases where the user is familiar with the make system

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |4

Hipify-clang
 https://github.com/ROCm-Developer-Tools/HIP/tree/master/hipify-clang
 Build from source
 ‘Hipification’ requires same headers that would be needed to compile it with clang:

./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

 Understands how to translate many CUDA libraries (cuBLAS, cuFFT, cuSPARSE, etc.)
 Will get useful warning messages about unknown conversions

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |5

Thing to be aware of
 Be aware of the things hipifying can’t handle:⁃ Inline ptx assembly⁃ Can either use inline GCN ISA, or convert it to HIP⁃ Hipify-perl can’t handle library calls, hipify-clang can handle library calls⁃ Hard-coded warp size of 32
 Then focus on performance

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |6

Fortran + CUDA C/C++ -> Fortran + HIP C/C++
 The only difference here is that the CUDA C/C++ code is linked with some Fortran routines
 Assumption is these Fortran routines do not contain CUDA Fortran
 This behaves like you would expect:⁃ hipify the CUDA⁃ Compile your HIP C/C++ with hipcc⁃ Compile your Fortran code⁃ Link with hipcc
 Example scenario: your HIP C/C++ code makes calls to Fortran functions (e.g., LAPACK functions) on the host

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |7

CUDA Fortran -> Fortran + HIP C/C++
 There is no HIP equivalent to CUDA Fortran
 But HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran
 The strategy here is:⁃ Manually port CUDA Fortran code to HIP kernels in C++⁃ Wrap the kernel launch in a C function⁃ Call the C function from Fortran through Fortran 2003 C binding
 This strategy should be usable by Fortran users since it is standard conforming Fortran
 This is not currently officially supported⁃ It is just here to show you what you can do now

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |8

Alternatives to using AMD GPUs from Fortran
 WILL provide OpenMP® 5.0 support for Fortran
 What are the options for writing HIP kernels with Fortran host code?

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |9

HIP with Fortran Strategy
 Idea is to use `interface` clause to `bind` to underlying C functions⁃ CRITICAL to remember Fortran is always pass-by-reference⁃ This has ramifications when declaring the function/subroutine in the interface clause⁃ If you get it wrong: undefined behavior
 Will also make use of Fortran enumerator⁃ C enums used frequently in HIP functions, helps preserve code readability and portability

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |10

Fortran Enumerators
 Unfortunately, cannot name enumerators and link directly to existing C enums⁃ Must reproduce consistently with underlying C enum⁃ Rules follow usual C rules for enums⁃ Will increment by one for each entry in the list or can specify value directly
 Strategy in this talk is to put them in a separate Fortran module⁃ Can `use` as needed in program and other modules
 Let’s go through an example

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |11

Fortran Enumerators

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |12

Fortran Enumerators

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |13

HIP Function Interfaces
 Now put inside module, interface block

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |14

HIP Function Interfaces
 Consider hipMemcpy

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |15

 Passing in an enum type, a void* and a size_t
 Function returns an enum⁃ Could write as a Fortran subroutine, but lose error checking

HIP Function Interfaces
 Consider hipMemcpy

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |16

 bind(c,name=“function_name”), function_name must match C name
 Returns an integer(kind(hipSuccess))⁃ Using our hip_enums module to define the kind of integer ensures portability with C enum type
 type(c_ptr) is Fortran 2003 interface for pointers
 Notice the `value` keyword which tells the compiler the pointer should be passed by value
 Can use `c_size_t` from iso_c_binding module to make sure we’re portable with the integer size

Putting It All Together
 Convenience function for return code checking

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |17

 Note there is a `hipGetErrorString` function
 Requires wrangling strings between C and Fortran

Putting It All Together
 Can allocate host memory as usual
 Device pointers are c_ptr

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |18

 Allocate device memory and copy to device
 Note need to provide pointer location since we’re passing pointer

Putting It All Together
 Kernel launch must be in C++
 Provide separate interface

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |19

Putting It All Together
 Kernel launch must be in C++
 Provide separate interface

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |20

Putting It All Together
 Synchronize and copy back
 Again, have to provide pointer location for host arrays

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |21

 Free device and host memory

Putting It All Together
 Now build and run

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |22

 gfortran on Fortran source
 hipcc on C++ source with HIP kernels⁃ If no HIP, could use regular g++⁃ Note: hipcc is not really a compiler, just a wrapper around our compiler hcc
 Need to use hipcc to link⁃ Need to include -lgfortran

Closing Thoughts
 No formal support for CUDA Fortran (“HIP Fortran”)
 HIP is C-callable (extern “C”)⁃ Can use F2003 C-binding to get a lot of the way there
 Limitations⁃ Kernel code + launch must be in C++⁃ Lose HIP portability layer to CUDA⁃ HIP layer to CUDA on Nvidia hardware uses `static inline` functions⁃ No symbols for Fortran interface to link against

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |23

AMD GPU Profiling: Currently in Flux
 What tools should I use?
 We are developing and supporting rocprofiler and roctracer
 The rocprofiler and roctracer libraries contain the central components allowing the collection of application traces and counters⁃ NOTE: These libraries are currently under development
 The rocprofiler library comes with a command line tool, rocprof, to collect traces and counters. ⁃ The output of rocprof can be visualized using the chrome browser with chrome tracing

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |24

AMD GPU Profiling: rocprofiler and roctracer
 rocprofiler: A HW-specific low-level performance analysis interface allowing the collection of GPU hardware counters for compute applications written in GPU for OpenCL™ and ROCm/HSA/HIP⁃ Documentation: https://github.com/ROCm-Developer-Tools/rocprofiler#user-content-profiling-utility-usage⁃ Installation⁃ From repo: sudo apt install rocprofiler-dev⁃ From source: https://github.com/ROCm-Developer-Tools/rocprofiler#user-content-to-build-with-the-current-installed-rocm⁃ Executable: /opt/rocm/bin/rocprof
 roctracer: A library containing tools for registering a generic runtime’s API callbacks and asynchronous activity. When used with rocprofiler it allows the collection of GPU traces⁃ Installation⁃ From repo: sudo apt install roctracer-dev⁃ From source: https://github.com/ROCm-Developer-Tools/roctracer#user-content-to-build-and-run-test
 roctracer works with rocprofiler. ⁃ To install both: sudo apt install rocprofiler-dev roctracer-dev
 Note: rocprofiler and roctracer can be used directly with the scripts discussed above, but they are meant to be used with higher level tools (such as Tau).

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |25

rocprofiler: Getting started + useful flags
 To get help:

⁃ $ /opt/rocm/bin/rocprof -h
 Useful housekeeping flags:⁃ --timestamp <on|off> : turn on/off gpu kernel timestamps⁃ --basenames <on|off>: turn on/off truncating gpu kernel names⁃ -o <output csv file>: Direct counter information to a particular file name⁃ -d <data directory>: Send profiling data to a particular directory⁃ -t <temporary directory>: Change the directory where data files typically created in /tmp are placed. This allows you to save these temporary files.
 Flags directing rocprofiler activity:⁃ -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)⁃ --hsa-trace - to trace GPU Kernels and host HSA events (more later).⁃ --hip-trace - to trace HIP API calls

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |26

rocprofiler: Collecting hardware counters
 rocprofiler can collect a number of hardware counters and derived counters

⁃ $ /opt/rocm/bin/rocprof --list-basic
⁃ $ /opt/rocm/bin/rocprof --list-derived

 Specify counters in a counter file. For example:
⁃ $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>
⁃ $ cat rocprof_counters.txtpmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

pmc : SALUInsts SFetchInsts LDSInsts GDSInsts SALUBusy FetchSize
pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict
pmc : TCC_HIT_sum TCC_MISS_sum TCC_EA_RDREQ_32B_sum TCC_EA_RDREQ_sum
pmc : TCC_EA_WRREQ_sum TCC_EA_WRREQ_64B_sum TCC_WRREQ_STALL_max⁃ A limited number of counters can be collected during a specific pass of code.⁃ Each line in the counter file will be collected in one pass⁃ You will receive an error suggesting alternative counter ordering if you have too many counters on one line⁃ A .csv file will be created by this command containing all of the requested counters

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |27

rocprofiler: Commonly Used Counters
 VALUUtilization: The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high divergence or a poorly sized grid
 VALUBusy: The percentage of GPUTime vector ALU instructions are processed. Can be thought of as something like compute utilization.
 FETCH_SIZE: The total kilobytes fetched from DRAM
 L2CacheHit : The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache
 MemUnitBusy : The percentage of GPUTime the memory unit is active. The result includes the stall time
 MemUnitStalled : The percentage of GPUTime the memory unit is stalled

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |28

performance counters—things to look out for
 GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight
• It is recommended that no other applications are running that use the GPU when collecting performance counters.

29 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

Other Tips
 Use “--basenames on” which will report only kernel names, leaving off kernel arguments.
 How do you time a kernel’s duration?

⁃ $ /opt/rocm/bin/rocprof --timestamps on -i rocprof_counters.txt <app with args>⁃ This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs⁃ Closest thing to a kernel duration: EndNs - BeginNs⁃ If you run with “--stats” the resultant results file will automatically include a column that calculates kernel duration⁃ Note: the duration is aggregated over repeated calls to the same kernel

30 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

rocprofiler + roctracer: Collecting application traces
 rocprofiler can collect traces ⁃ “--hip-trace - to trace HIP, generates API execution stats and JSON file chrome-tracing compatible”⁃ Basically collects HIP API calls.⁃ “--hsa-trace - to trace HSA, generates API execution stats and JSON file chrome-tracing compatible”⁃ CPU side: ⁃ Traces all HSA APIs called by the application⁃ Collects CPU side timing data for these calls⁃ GPU side:⁃ Traces kernels dispatched to the GPU.⁃ Traces data transfers (host to device and/or device to device).⁃ Collects GPU side timing

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |31

rocprofiler + roctracer: Collecting application traces
 rocprofiler can collect traces

⁃ $ /opt/rocm/bin/rocprof --hsa-trace <app with arguments>⁃ This will output a .json file that can be visualized using the chrome browser⁃ Go to chrome://tracing and then load in the .json file.⁃ The trace will display copies, hsa signals, and kernel calls.⁃ It can handle multiple traces

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |32

rocprofiler + roctracer: Multiple MPI Ranks
 rocprofiler can collect counters and traces for multiple MPI ranks as long as it is told how to output data for each rank.
 Say you want to profile an application usually called like this:⁃ mpiexec –np <n> ./Jacobi_hip –g <x> <y>

⁃ To obtain trace and counter information for each rank you should create a shell script (we can call it wrapper.sh) that calls rocprof:
⁃ #!/bin/bashrocprof -i counters_${OMPI_COMM_WORLD_RANK}.txt --hsa-trace ./Jacobi_hip -g $1 $2⁃ Then invoke the script by executing:
mpiexec -np <n> wrapper.sh <x> <y>

 This will produce separate traces for each rank. ⁃ Note: roctracer doesn’t yet provide a way to combine the produced traces
 If all your ranks are on the same node, you can combine traces by involving rocprof like so:

⁃ rocprof <rocprof options> mpiexec <mpi options> application <application arguments>

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |33

Obtaining Occupancy Information
 Problem: rocprofiler can’t be used to find VGPR or SGPR information currently.
 The extractkernel command summarizes information about the generated AMDGCN in a .bundle file. vectoradd_hip.exe-000.bundle:

vectoradd_hip.exe-000.bundle excerpt:
- Name: width

Size: 4
Align: 4
ValueKind: ByValue
ValueType: I32

- Name: height
Size: 4
Align: 4
ValueKind: ByValue
ValueType: I32

CodeProps:
KernargSegmentSize: 32
GroupSegmentFixedSize: 0
PrivateSegmentFixedSize: 0
KernargSegmentAlign: 8
WavefrontSize: 64
NumSGPRs: 14
NumVGPRs: 7
MaxFlatWorkGroupSize: 256

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |34

Interpreting the ISA
 Problem: Sometimes you need to see what the compiler has done in a key region of your kernel.⁃ What if your kernel is huge?
 It is possible to produce an .isa file annotated with source code line numbers.⁃ Pass the "-gline-tables-only" flag to hipcc⁃ Set the environment variable KMDUMPISA=1

⁃ $ /opt/rocm/hcc/bin/llvm-objdump -mcpu=gfx900 -source -line-numbers dump-gfx900.isabin > linenumbers.isa
linenumbers.isa example excerpt:
00000000000002a0 BB0_2:
; /home/smoe/git/HIP-Examples/gpu-burn/BurnKernel.cpp:64
; local_c += alpha * A[idx_y + k * K] * B[idx_x * K + k];

global_load_dword v7, v[5:6], off // 0000000002A0: DC508000 077F0005
global_load_dword v8, v[2:3], off // 0000000002A8: DC508000 087F0002

; /home/smoe/git/HIP-Examples/gpu-burn/BurnKernel.cpp:63
; for(int k = 0; k < K; k++) {

v_add_co_u32_e32 v5, vcc, 4, v5 // 0000000002B0: 320A0A84
v_addc_co_u32_e32 v6, vcc, 0, v6, vcc // 0000000002B4: 380C0C80
s_add_i32 s2, s2, -1 // 0000000002B8: 8102C102
v_mov_b32_e32 v9, s1 // 0000000002BC: 7E120201
v_add_co_u32_e32 v2, vcc, s0, v2 // 0000000002C0: 32040400
s_cmp_lg_u32 s2, 0 // 0000000002C4: BF078002
v_addc_co_u32_e32 v3, vcc, v3, v9, vcc // 0000000002C8: 38061303

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |35

QUESTIONS?

Disclaimer

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |37

DISCLAIMERThe information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, Threadripper, EPYC, Infinity Fabric, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

AMD Compilers
 aocc⁃ C/C++/Fortran compilers with optimizations for AMD CPUs
 hipcc⁃ Script to wrap around nvcc or call AMD’s internal HIP compiler⁃ Needed to compile HIP device code, HIP API functions compatible with normal C++ compilers
 aomp⁃ AMD OpenMP 5.0 Compiler⁃ Compiles C/C++ code with OpenMP “target” pragmas⁃ Links with libomptarget to produce a binary that can offload work to the GPU

All compilers are based on clang, compilers will be upstreamed to clang where possible.

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |38

ROCm
 HIP is part of a larger software distribution called the Radeon Open Compute, or ROCm, Package
 Install instructions and documentation can be found here: https://github.com/RadeonOpenCompute/ROCm
 The ROCm package provide libraries and programming tools for developing HPC and ML applications on AMD GPUs⁃ rocminfo⁃ rocm-smi⁃ rocprof

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |39

ROCm GPU Libraries
 ROCm provides several GPU math libraries⁃ Typically two versions:⁃ roc* -> AMD GPU library, usually written in HIP⁃ hip* -> Thin interface between roc* and Nvidia cu* library⁃ When developing an application meant to target both CUDA and AMD devices, use the hip* libraries⁃ When developing an application meant to target only AMD devices, may prefer the roc* library API

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |40

hipBLAS
rocBLAS cuBLAS

Some Links to Key Libraries
 BLAS ⁃ rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)⁃ hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)
 FFTs ⁃ rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)
 Random number generation⁃ rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)⁃ hipRAND (https://github.com/ROCmSoftwarePlatform/hipRAND)
 Sparse linear algebra⁃ rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)⁃ hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)
 Iterative solvers⁃ rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)
 Parallel primitives⁃ rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)⁃ hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |41

More links to key libraries
Machine Learning libraries and Frameworks⁃ Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream⁃ Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch⁃ MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen⁃ Tensile: https://github.com/ROCmSoftwarePlatform/Tensile⁃ RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |42

Extra Slides:Current profiling tools, unsupported on Frontier:CodeXL and rcprof

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |43

AMD GPU Profiling: Currently in Flux
 What tools should I use?
 Names you may have seen in our old documentation:⁃ rocm-profiler⁃ rocprofiler⁃ roctracer⁃ RCP⁃ rocprof⁃ rcprof⁃ CodeXL
 Going forward we will be developing and supporting rocprofiler and roctracer
 The Radeon™ Compute Profiler (RCP) is another command line tool for collecting traces and counters. The binary is to run RCP is rcprof. The output from RCP can be visualized using CodeXL
 Going forward we will be developing and supporting rocprofiler and roctracer, not rcprof and CodeXL

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |44

RCP and CodeXL
 RCP: A command line tool for collecting hardware counters and application traces. The binary for RCP is rcprof.⁃ Documentation: https://radeon-compute-profiler-rcp.readthedocs.io/en/latest/⁃ Installation⁃ From repo: sudo apt install rocm-profiler cxlactivitylogger⁃ From source: https://github.com/GPUOpen-Tools/RCP⁃ Executable: rcprof
 CodeXL: A GUI application for visualizing the output of RCP.⁃ Documentation: https://github.com/GPUOpen-Tools/CodeXL⁃ Installation: ⁃ From repo: sudo apt install codexl⁃ From source:https://github.com/GPUOpen-Tools/CodeXL/releases
 Activity Logger: A library that allows users to instrument code with annotations that can be displayed in CodeXL.⁃ Documentation: https://github.com/GPUOpen-Tools/common-src-AMDTActivityLogger

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |45

rcprof: application trace mode
 Getting usage info

⁃ rcprof

 Getting ROCm/HSA/HIP application traces:
⁃ rcprof --hsatrace <application with arguments>
⁃ rcprof -A <application with arguments>

 CPU-side trace
• Traces all HSA APIs called by the application (function name, return value, argument values)
• Collects CPU-side timing data for all API calls

 GPU-side trace
• Traces all kernels dispatched to the GPU
• Traces all data transfers between devices (host<->device, device<->device)
• Collects GPU-side timing data for both of the above

46 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

rcprof: application trace mode
 Default output file is ~/apitrace.atp

• Can be overridden with --outputfile filename or -o filename

 Default working directory is ~
• Can be overridden with --workingdirectory dir or -w dir

 Summary info (add --tracesummary or –T to above command lines)
• Generates HTML Summary pages providing

• API Usage Warnings/Errors
• Summary of all APIs called (# of times, total elapsed time)
• Kernel Dispatch Summary and Top 10 Kernel Dispatches
• Top 10 Data Transfers

 ActivityLogger instrumentation
• The ActivityLogger is a library that allows you to instrument your code with annotations that can appear in the CodeXLtimeline viewer
• It’s a good way to “fill the gaps” in the timeline
• It’s can also be a good way to correlate user code to HSA-specific events in the timeline

47 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

rcprof: performance counter mode
 ROCm/HSA⁃ rcprof --hsapmc <application with arguments>⁃ rcprof -C <application with arguments>
 Kernel dispatch statistics⁃ Kernel Name, Global Grid Size, Work Group Size, LDS, VGPR and SGPR usage
 Default output file is ~/Session1.csv ⁃ Can override output file name and location using --outputfile filename ⁃ or -o filename
 Single-pass performance counters⁃ List Available Counters: ⁃ rcprof --list (-l) or rcprof --listdetailed (-L)

⁃ Available Counters: Wavefronts, VALUInsts, SALUInsts, VFetchInsts, SFetchInsts, VWriteInsts, FlatVMemInsts, LDSInsts, FlatLDSInsts, GDSInsts, VALUUtilization, VALUBusy, SALUBusy, FetchSize, WriteSize, L2CacheHit, MemUnitBusy, MemUnitStalled, WriteUnitStalled, LDSBankConflict

48 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

rcprof: specifying performance counters and output files
 Profile using default counter set

• rcprof --hsapmc (-C) <application with arguments>
• The profiler will enable as many counters as possible that will fit into a single pass (varies by hardware generation)

 Specify counters using --counterfile or -c
• rcprof -C --counterfile counterfile.txt <application with args>
• The argument to --counterfile is a file name. That file should contain one counter name per line.

 Check number of passes required
• rcprof --counterfile counterfile.txt --numberofpass

 Generate counter files
• rcprof --list --outputfile counterfile.txt

 Generate single-pass counter files
• rcprof --list --outputfile counterfile.txt --maxpassperfile 1
• Generates “counterfile_pass1.txt”, “counterfile_pass2.txt”, etc.
• A set of single-pass counter files is generated in /opt/rocm/profiler/counterfiles when installing the profiler using the Debian package. If generation fails, there will be a text files containing information on how to generate these manually.

49 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

rcprof: limiting profiling data
 General

• Limiting profile duration
• rcprof --startdelay X

• Runs the application, but doesn’t start collecting profile data until the specified start delay (in ms) passes
• rcprof --profileduration X

• Runs the application and stops collecting profile data after the specified duration (in ms) passes
• rcprof --startdisabled

• Run the application but doesn’t collect any profile data.
• Can be used in conjunction with instrumenting an application with the ActivityLogger

• ActivityLogger instrumentation
• The ActivityLogger library can be used to instrument an application to control which parts of an application generate profile data.
• amdtStopProfiling, amdtResumeProfiling

50 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

CodeXL: viewing profiling data
 Steps to import a profiler session file
1. Start CodeXL
2. Create a new project using File>New Project menu item

• Accept all default settings and options
3. Switch to Profile Mode using Profile>Switch to Profile Mode menu item
4. Switch to GPU profiling using Profile>GPU: Performance Counters or Profile>Application Timeline Trace (either of the two works)
5. In the CodeXL Explorer window, right click and select Import Session menu item
6. Navigate to the location of the .atp file or .csv file that you want to import

• The file will be imported and the data will be displayed.

51 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

52 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

Annotating the timeline with the ActivityLogger
 void HaloExchange(grid_t& grid, mesh_t& mesh,
 hipStream_t stream, dfloat* d_U) {
 //copy each side to the haloBuffer
 amdtBeginMarker("Halo D2H", "Halo Exchange", "");
 if (grid.Neighbor[SIDE_DOWN]>-1)
 SafeHipCall(hipMemcpy2DAsync(mesh.sendBuffer + mesh.sideOffset[SIDE_DOWN],
 mesh.Nx*sizeof(dfloat),
 d_U,
 mesh.Nx*sizeof(dfloat),
 mesh.Nx*sizeof(dfloat), 1,
 hipMemcpyDeviceToHost, stream));
 // more code, omitted
 // wait for the data to arrive on host
 hipStreamSynchronize(stream);
 amdtEndMarker();
 //post recvs & sends
 amdtBeginMarker("MPI Exchange", "Halo Exchange", "");
 for (int s=0;s<NSIDES;s++) {
 if (grid.Neighbor[s]>-1) {
 MPI_Irecv(mesh.recvBuffer + mesh.sideOffset[s], mesh.sideLength[s], MPI_DFLOAT,
 grid.Neighbor[s], 0, grid.comm, mesh.requests+2*s);
 MPI_Isend(mesh.sendBuffer + mesh.sideOffset[s], mesh.sideLength[s], MPI_DFLOAT,
 grid.Neighbor[s], 0, grid.comm, mesh.requests+2*s+1);
 }
 }
 // more code, omitted

53 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

54 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

55 | Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

