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AMD GCN Hardware Overview

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 | |3



AMD Graphics Core Next (GCN) GPUs
AMD’s first GCN GPUs were released in 2012, family of chips code-named Southern Islands⁃ Multiple GCN generations released since then, with the most recent being GFX9 which uses the Vega Instruction Set Architecture (ISA)⁃ Current hardware and ISA documented in “Vega Instruction Set Architecture for GPUs”, see https://developer.amd.com/resources/developer-guides-manuals/⁃ Our recommendation is to target current GCN hardware
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AMD GCN Hardware Hierarchy
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AMD GCN GPU Hardware Layout
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AMD GCN GPU Hardware Layout

GPU

Command Processor
Command Queue Command QueueQueues reside in user-visible DRAM
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AMD GCN GPU Hardware Layout
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AMD GCN GPU Hardware Layout

Command Processor
Command Queue Command QueueQueues reside in user-visible DRAM
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AMD GCN GPU Hardware Layout
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AMD GCN GPU Hardware Layout
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AMD GPU Compute Terminology
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Overview of GPU Kernels
GPU Kernel

Functions launched to the GPU that are executed by multiple parallel workers
Examples: GEMM, triangular solve, vector copy, scan, convolution
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Overview of GPU Kernels
GPU Kernel
Workgroup 0

Workgroup 1
Workgroup 2
Workgroup 3
Workgroup 4
…
Workgroup n

Group of threads that are on the GPU at the same time.Also on the same compute unit.Can synchronize together and communicate through memory in the CU.

Programmer controls the number of workgroups – it’s usually a function of problem size.

CUDA TerminologyThread Block
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Overview of GPU Kernels
GPU Kernel
Workgroup 0

Wavefront

Workgroup 1
Workgroup 2
Workgroup 3
Workgroup 4
…
Workgroup n

Collection of resources that execute in lockstep, run the same instructions, and follow the same control-flow path. Individual lanes can be masked off.Can think of this as a vectorized thread. Lanes may access non-adjacent memory locations.
CUDA TerminologyWarp
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Overview of GPU Kernels
GPU Kernel
Workgroup 0

Wavefront 0 Wavefront 1 … Wavefront 15
64 work items (threads)

Workgroup 1
Workgroup 2
Workgroup 3
Workgroup 4
…
Workgroup n

Number of wavefronts / workgroup is chosen by developer (in HIP) or compiler (in OpenMP).GCN hardware allows up to 16 wavefronts in a workgroup.
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Scheduling work to a GPU

Command Processor
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GPU Memory, I/O, and Connectivity

GPU
Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe® Controllers Infinity Fabric Controllers

DMA Engines DMA EnginesSystem Memory Other GPUsL2 Cache
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DMA Engines Accept Work from the Same Queues

GPU
Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe® Controllers Infinity Fabric Controllers

DMA Engines DMA EnginesSystem Memory Other GPUs

Step 1CPU submits a DMA Transfer packet to the command queue This is done with user-level memory writes in Radeon Open Compute (ROCm).No kernel drivers involved.

L2 Cache
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DMA Engines Accept Work from the Same Queues

GPU
Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe® Controllers Infinity Fabric Controllers

DMA Engines DMA EnginesSystem Memory Other GPUs

Step 2CP Reads the packet and understands the transfer request

L2 Cache
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DMA Engines Accept Work from the Same Queues

GPU
Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe® Controllers Infinity Fabric Controllers

DMA Engines DMA EnginesSystem Memory Other GPUs

Step 3CP sends transfer command to the target DMA Engine
This can take place in parallel with other compute work & transfers

L2 Cache
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DMA Engines Accept Work from the Same Queues

GPU
Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe® Controllers Infinity Fabric Controllers

DMA Engines DMA EnginesSystem Memory Other GPUs

Step 4DMA Engines Transfer Data to/from GPU Memory

L2 Cache
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AMD GCN Compute Unit Internals
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The GCN Compute Unit (CU)

• The command processor sends work packages (i.e. workgroups of work-items in HIP) to the Compute Units (CUs)
• Blocks are executed in wavefronts (groups of 64 work-items on a SIMD)
• All wavefronts in a block reside on the same CU
• The CU’s scheduler can hold wavefronts from many blocks
• At most 40 wavefronts total per CU (10 per SIMD)

Compute Unit (CU)
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The GCN Compute Unit (CU)

• The Scalar Unit (SU)
• Shared by all work-items in each wavefront, accessed on a per-wavefront level
• Work-items in a wavefront performing the exact same operation can offload this instruction to the SU
• Used for control flow, pointer arithmetic, dispatch a common constant value, etc.
• Has its own pool of Scalar General-Purpose Register (SGPR) file, 12.5KB per CU

• Maximum of 102 SGPRs / wavefront

Scalar Unit
SGPR
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The GCN Compute Unit (CU)

• SIMD Units
• 4x SIMD vector units (each 16 lanes wide)
• 4x 64KB (256KB total) Vector General-Purpose Register (VGPR) file  

• Maximum of 256 registers per SIMD – each register is 64x 4-byte entries  
• Instruction buffer for 10 wavefronts on each SIMD unit

• Each wavefront is local to a single SIMD unit, not spread among the four (more on this in a moment)

SIMD0Scalar Unit
SGPR VGPR

SIMD1
VGPR

SIMD2 SIMD3
VGPR VGPR
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The GCN Compute Unit (CU)

• 64KB Local Data Share (LDS, or shared memory)
• 32 banks with conflict resolution
• Can share data between all work-items in a workgroup

• 16 KB Read/Write L1 vector data cache
• Write-through; L2 cache is the device coherence point – shared by all CUs

SIMD0Scalar Unit
SGPR

LDS

VGPR

L1 Cache
SIMD1
VGPR

SIMD2 SIMD3
VGPR VGPR
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The GCN Compute Unit (CU)

• Scheduler
• Buffer for up to 40 wavefronts – 2560 work-items
• Separate decode/issue for  

⁃ VALU, VGPR load/store
⁃ SALU, SGPR load/store
⁃ LDS load/store
⁃ Global mem load/store
⁃ Special instructions (NoOps, barriers, branch instructions)

SIMD0Scalar Unit
SGPR

LDS

VGPR

L1 Cache
Scheduler

SIMD1
VGPR

SIMD2 SIMD3
VGPR VGPR
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The GCN Compute Unit (CU)

• Scheduler
• At each clock, waves on 1 SIMD unit are considered for execution (Round Robin scheduling among SIMDs)
• At most 1 instruction per wavefront may be issued
• At most 1 instruction from each category may be issued (SALU/VALU, SGPR/VGPR, LDS, global, branch, etc.)
• Maximum of 5 instructions issued to wavefronts on a single SIMD, per cycle per CU
• VALU instructions take a multiple of four cycles to retire 

• e.g. FP32 FMA: cycle 0 – lanes 0-15 | cycle 1 – lanes 16-31 | cycle 2 – lanes 32-47 | cycle 3 – lanes 48-63
• Programmer can still ‘pretend’ CU operates in 64-wide SIMD: 64 FP32 FMA ops / cycle / CU

SIMD0Scalar Unit
SGPR

LDS

VGPR

L1 Cache
Scheduler

SIMD1
VGPR

SIMD2 SIMD3
VGPR VGPR
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Hardware Configuration Parameters on Modern AMD GPUs
GPU SKU Chip Code Name Shader Engines CUs / SE

AMD Radeon Instinct™ MI60 Vega 20 4 16
AMD Radeon Instinct™ MI50 Vega 20 4 15
AMD Radeon™ VII Vega 20 4 15
AMD Radeon Instinct™ MI25AMD Radeon™ Vega 64 Vega 10 4 16
AMD Radeon™ Vega 56 Vega 10 4 14
AMD Radeon Instinct™ MI6 Polaris 10 4 9
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Software Terminology
NVIDIA/CUDA Terminology AMD Terminology Description

Streaming Multiprocessor Compute Unit (CU) One of many parallel vector processors in a GPU that contain parallel ALUs.All waves in a workgroups are assigned to the same CU.
Kernel Kernel Functions launched to the GPU that are executed by multiple parallel workers on the GPU. Kernels can work in parallel with CPU.
Warp Wavefront Collection of operations that execute in lockstep, run the same instructions, and follow the same control-flow path. Individual lanes can be masked off.Think of this as a vector thread. A 64-wide wavefront is a 64-wide vector op.

Thread Block Workgroup Group of wavefronts that are on the GPU at the same time. Can synchronize together and communicate through local memory.
Thread Work Item / Thread Individual lane in a wavefront. On AMD GPUs, must run in lockstep with other work items in the wavefront. Lanes can be individually masked off.

GPU programming models can treat this as a separate thread of execution, though you do not necessarily get forward sub-wavefront progress.

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 | |31



Software Terminology

NVIDIA/CUDA Terminology AMD Terminology Description
Global Memory Global Memory DRAM memory accessible by the GPU that goes through some layers cache
Shared Memory Local Memory Scratchpad that allows communication between wavefronts in a workgroup.
Local Memory Private Memory Per-thread private memory, often mapped to registers.
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GPU Occupancy on GFX9
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GPUs: massively parallel, resource limited
AMD GPUs are massively parallel processors with relatively limited on-chip resources.  On modern AMD GPUs, typically there are:
 64 or 60 compute units (CUs), each containing⁃ 4x16-wide SIMDs⁃ 4x64KB Vector General Purpose Register (VGPR) file⁃ 64KB Local Data Share (LDS)⁃ 16KB Read/Write L1 vector cache⁃ 12.5KB Scalar General Purpose Register (SGPR) file⁃ Instruction buffer allowing for 10 wavefronts (WF) in flight per SIMD (40 WF/CU)
 Achieving improved performance often requires balancing the utilization of different resources pools
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What is Occupancy?
Occupancy: the ratio of active WF executing on the GPU to the maximum number of possible WF supported by the hardware.⁃ Occupancy is controlled by the utilization of resources on a CU⁃ Can indicate over/under utilization of resources, limiting performance
Different “flavors” of occupancy available:

Achieved occupancy is measured on the hardware and is a time-dependent metric (as the number of active WF is not constant). 
Theoretical occupancy is a calculated metric, derived from the resources requested by the kernel
In addition, occupancy may be reported per-CU, or per-GPU

To see why occupancy is important, we will consider a batch matrix-vector multiply kernel.
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Occupancy: limiting factors
• Number of wavefronts: max 10 per SIMD, 40 per CU
• Number of wavefronts per workgroup (AKA thread block): max 16 (i.e., max 1024 threads per workgroup).

• Note that all wavefronts of a workgroup are required to be scheduled on the same CU, but not necessarily on the same SIMD of the CU.
• Note that with 16 wavefronts per workgroup, we can schedule at most 32 wavefronts on the CU. The remaining 8 are insufficient for another workgroup.

• Number of workgroups per CU:
• If workgroups have just one wavefront: max number of workgroups/CU is 40
• If workgroups have more than one wavefront: max number of workgroups/CU is 16
• Example: if workgroups have three wavefronts, max #wavefronts/CU is 39 (= 13*3)

• Corollary: to maximize occupancy, the #wavefronts/workgroup should be 1, 4, 5, or 8
• Note that this is a necessary condition, but not a sufficient condition
• Note again that maximizing occupancy isn’t always necessary for maximum performance
• Data layout (e.g., stencil size) or algorithmic considerations may dictate other workgroup sizes
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Occupancy: limiting factors—register usage
 AMD GPU hardware has two types of general purpose registers:
• Scalar registers: one instance per wavefront

• s0, s1, ..
• Used for e.g. pointers to the base of a data block, and for branching

• Vector registers: one instance per thread
• v0, v1, …

 Registers are 32 bits wide, but can be combined into wider registers:
• E.g. s[6:7] forms a 64-bit scalar register

• Lower order bits are in lower numbered register
• Scalar register pairs forming a 64-bit register must be even-aligned (s[7:8] is not allowed)
• No such alignment is required for vector register pairs 

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 | |37



Occupancy: limiting factors—register usage
 Scalar registers:
• Total scalar register file size: 12.5 KB (3,200 registers, 800 per SIMD)
• A single wavefront can allocate up to 112 scalar registers in batches of 16

• The last 6 of these are used for special purposes (such as VCC), and these cannot be used as general purpose scalar registers by user code
• The 112 case is special; here, 4 additional registers cannot be used, leaving 102 for GPR purposes
• For each wavefront, 16 additional registers are allocated for a trap handler
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# SGPRs reserved 16 32 48 64 80 96 112
# SGPRS available 10 26 42 58 74 90 102
# allocated inc +16 32 48 64 80 96 112 128
# wavefronts / SIMD 10 10 10 10 8 7 6



Occupancy: limiting factors—register usage
 Vector registers:
• Vector register file size: 64 KB per SIMD (16K registers = 64 * 256)
• A single wavefront can allocate up to 256 vector registers per thread

• Scalar registers are allocated in batches of 4 registers
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# VGPRs <=24 28 32 36 40 48 64 84 128 256
# wavefronts / SIMD 10 9 8 7 6 5 4 3 2 1



Occupancy: limiting factors—LDS usage
 Local Data Store:
• Fast memory that can be used to share data across a thread block/workgroup

• Note that for occupancy calculations, we need to look at the usage per workgroup, not per wavefront
• AMD equivalent of CUDA’s __shared__ memory
• 64 KB per Compute Unit
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Example: batched matrix-vector multiply
As a test-bed for our occupancy calculations, we will use a batched matrix-vector multiplication kernel:
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• is a (NmxNm) matrix
• and are Nv vectors each of size (Nmx1)



Example: batched matrix-vector multiply
Main implementation ideas:
 Every work-item multiplies ̅ܣ with multiple vectors from ݔԦ.
 The data of a vector from ݔԦ is reused Nm times.
 Instead of loading a vector from ݔԦ from HBM for every use, we preload a batch of WG-size * Nb of them in (faster) LDS, and use them repeatedly from there.
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Example occupancy calculation
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Resulting performance ~33 GFLOP/s, very poor! Why?⁃ One reason: using too much LDS per work-group!

ୱ୧ୣ ୠ ୫Kernel configuration V0
* Limits maximum memory allocation to ~2GB

Parameter Value
WG-size 128

Nm 4
Nb 32
Nv 4.90E+08*



Example occupancy calculation
Recall: 64KB of LDS available per CU

Limited to a single WG of 128 work-items (or two WF) per CU in this configuration!
Recall: 40 Wavefronts possible per CU:

Occupancy ൌ ଶ
ସ ൌ 0.05

Solution: lower LDS usage per WG⁃ In this example, we can either decrease the workgroup size, or decrease the batch size Nb
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Example occupancy calculation
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In this configuration:⁃ LDS/WG = 2KB ⁃ 32 WG/CU⁃ 2 WF/WG
⁃ Occupancy limit from LDS ൌ ଷଶ∗ଶ

ସ ൌ 1.6
 no longer limited by LDS usage

In our informal tests, reducing the batch size from 32 to 1 resulted in a performance increase to ~215 GFLOP/s (~6.5x speedup)

Parameter Value
WG-size 128

Nm 4
Nb 1
Nv 4.90E+08

Kernel configuration V1



Example occupancy calculation
Next, we consider the limitation on the number of workgroups/CU and wavefronts/CU:

Limit: 16 WG/CU⁃ Exception: doesn’t apply to workgroups of a single wavefront (i.e., WG-size=64)
Limit: 40 Wavefronts/CU

To reach full occupancy:

WG ∗ WF
WG  40

Currently we have:

WG ∗ WF
WG ൌ 16 ∗ 2 ൌ 32

Occupancy ൌ 32
40 ൌ 0.8

Solution: Increase WG-size to 256 WF/WG=4
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Example occupancy calculation
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Limits:
LDS limit:⁃ LDS/WG = 4KB 16 WG/CU
WG limit:⁃ Target WG/CU=16
WF/WG=4

Occupancy limit from LDS and WG-size:

Occupancy ൌ  min WG
CU ୈୗ , WG

CU ୋ ∗ WF
WG ∗ 1

40
    ൌ min 16, 16 ∗ 4 ∗ ଵ

ସ ൌ 1.6
 No longer limited by WG-size
However… performance didn’t increase (~215 GFLOP/s)

Parameter Value
WG-size 256

Nm 4
Nb 1
Nv 4.90E+08

Kernel configuration V2



Example occupancy calculation
Occupancy is not a silver bullet!⁃ high occupancy does not always imply peak performance,⁃ conversely, low occupancy does not imply poor performance
In our case, increasing occupancy from 0.8 to 1.0 had little effect on performance!

For example:⁃ Increasing occupancy often doesn’t result in improved performance if there is already enough occupancy to hide latencies in the kernel with context switching
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Example occupancy calculation
Profiling shows only ~50% VALU usage and low VGPR usage.
Idea: 
 Apply unrolling to the inner matrix vector multiply
 Experiment with different unroll factors Nu
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Example occupancy calculation
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Varying Nu controls the number of VGPRs allocated per work-item: VGPR limit on occupancy:
• Recall: 256 KB VGPRs/CU, 4 SIMD/CU
• Minimum of 1WF/SIMD

Minimum of 64 work-items/SIMD
 For floats, we have at most:256KB

4B ∗ 1CU
4SIMD ∗ 1SIMD

64WI ൌ 256 VGPRs
WI



Example occupancy calculation
Take Nu=8 case*:

WF
CU ୋୖ ൌ

256 VGPRWI ୫ୟ୶
27 VGPRWI

∗ 1WF
SIMD ∗ 4SIMD

CU ൌ 36

This is also limited to wavefronts that can fit into a workgroup:

WG
CU ୋୖ ൌ

WFCU ୋୖWFWG

For our work-group size of 256 (WF/WG ൌ 4): WG
CU ୋୖୋ

ൌ 9

*ignoring for the moment that our matrix size is only 4
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Example occupancy calculation
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From earlier:
LDS limit:⁃ LDS/WG = 4KB 16 WG/CU
WG limit:⁃ Target WG/CU=16
WF/WG=4

VGPR Limit:⁃ 9 WG/CU
Occupancy ൌ min ୋ

େ ୈୗ , ୋ
େ ୋ , ୋ

େ ୋୖ

ୋ

ଵ
ସ

ൌ min 16, 16, 9 ∗ 4 ∗ ଵ
ସ ൌ 0.9

Kernel configuration V3

Parameter Value
WG-size 256

Nm 4
Nb 1
Nv 4.90E+08
Nu 8



Wrap up
Occupancy is not a silver bullet!⁃ high occupancy does not always imply peak performance,⁃ conversely, low occupancy does not imply poor performance
Good rules of thumb:⁃ Bandwidth bound kernels may achieve good performance even with low occupancy, as the key is to saturate the memory controller⁃ For some kernels, data dependencies may cause compute operations to stall. Here, a high occupancy is beneficial to allow context switches in order to hide latencies⁃ Some compute bound kernels may benefit from higher occupancy to achieve high instruction throughput, however other kernels may benefit from lower occupancy to allow increased VGPR usage and avoid spillage⁃ Vary parameters to see interplay between resource usage (LDS, VGPR, WG-size) and occupancy to obtain maximum performance
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Wrap up
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Vary parameters to see interplay between resource usage (LDS, VGPR, WG-size) and occupancy to obtain maximum performance!⁃ For example… this kernel configuration achieves over 575 GFLOP/s with an occupancy of 0.4!

Kernel configuration V4

Parameter Value
WG-size 512

Nm 16
Nb 1
Nv 4.90E+08
Nu 8
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