
Using with AMD’s HIP on Frontier
Noel Chalmers, Damon McDougall, Paul Bauman, Nicholas Curtis, Nicholas Malaya, Rene van Oostrum, Noah Wolfe
10/8/2019

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |1

Introduction to HIP
AMD’s Heterogeneous-compute Interface for Portability, or HIP, is a C++ runtime API and kernel language that allows developers to create portable applications that can run on AMD’s accelerators as well as CUDA devices.

HIP:
 Provides an API for an application to leverage GPU acceleration for both AMD and CUDA devices
 Syntactically similar to CUDA. Most CUDA API calls can be converted in place: cuda -> hip
 Supports a strong subset of CUDA runtime functionality
 Open-source
 Currently available on Summit

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

nvcc hipcc

Nvidia GPU AMD GPU

2

Getting started with HIP

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

__global__ void add(int n,
double *x,
double *y){int index = blockIdx.x * blockDim.x

+ threadIdx.x;int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride){y[i] = x[i] + y[i];
}}

__global__ void add(int n,
double *x,
double *y){int index = blockIdx.x * blockDim.x

+ threadIdx.x;int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride){y[i] = x[i] + y[i];
}}

KERNELS ARE SYNTACTICALLY THE SAME

CUDA VECTOR ADD HIP VECTOR ADD

3

CUDA APIs vs HIP API

| Frontier Application Readiness Kick-Off Workshop | Oct 2019 |

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x, x, N*sizeof(double), cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x, x, N*sizeof(double), hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP

4

Launching a kernel

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

some_kernel<<<gridsize, blocksize,shared_mem_size, stream>>>
(arg0, arg1, ...);

hipLaunchKernelGGL(some_kernel,
gridsize, blocksize,shared_mem_size, stream,
arg0, arg1, ...);

CUDA KERNEL LAUNCH SYNTAX HIP KERNEL LAUNCH SYNTAX

5

HIP API
 Device Management: ⁃ hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()
 Memory Management⁃ hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()
 Streams⁃ hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), hipStreamFree()
 Events⁃ hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()
 Device Kernels⁃ __global__, __device__, hipLaunchKernelGGL()
 Device code⁃ threadIdx, blockIdx, blockDim, __shared__⁃ 200+ math functions covering entire CUDA math library.
 Error handling⁃ hipGetLastError(), hipGetErrorString()

| Frontier Application Readiness Kick-Off Workshop | Oct 20196

Kernels
A simple embarrassingly parallel loop

for (int i=0;i<N;i++) {
h_a[i] *= 2.0;

}

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

Can be translated into a GPU kernel:
__global__ void myKernel(int N, double *d_a) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {
d_a[i] *= 2.0;

}
}

 A device function that will be launched from the host program is called a kernel and is declared with the __global__ attribute
 Kernels should be declared void
 All pointers passed to kernels must point to memory on the device (more later)
 All threads execute the kernel’s body “simultaneously”
 Each thread uses its unique thread and block IDs to compute a global ID

7

Kernels

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

Kernels are launched from the host:

dim3 threads(256,1,1); //3D dimensions of a block of threads
dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel, //Kernel name (__global__ void function)
blocks, //Grid dimensions
threads, //Block dimensions
0, //Bytes of dynamic LDS space (see extra slides)
0, //Stream (0=NULL stream)
N, a); //Kernel arguments

Analogous to CUDA kernel launch syntax:
myKernel<<<blocks, threads, 0, 0>>>(N,a);

8

Device Memory

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

The host instructs the device to allocate memory in VRAM and records a pointer to device memory:
int main() {
…
int N = 1000;
size_t Nbytes = N*sizeof(double);
double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;
hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device

…

free(h_a); //free host memory
hipFree(d_a); //free device memory

}
9

Device Memory

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

The host queues memory transfers:

//copy data from host to device
hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host
hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another
hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);

10

Difference between HIP and CUDA
Some things to be aware of writing HIP, or porting from CUDA:
 AMD GCN hardware ‘warp’ size = 64 (warps are referred to as ‘wavefronts’ in AMD documentation)
 Device and host pointers allocated by HIP API use flat addressing⁃ Unified virtual addressing is enabled by default⁃ Unified memory is available, but does not perform optimally currently
 Dynamic parallelism not currently supported
 CUDA 9+ thread independent scheduling not supported (e.g., no __syncwarp)
 Some CUDA library functions do not have AMD equivalents
 Shared memory and registers per thread can differ between AMD and Nvidia hardware
 Inline PTX or AMD GCN assembly is not portable

Despite differences, majority of CUDA code in applications can be simply translated.

| Frontier Application Readiness Kick-Off Workshop | Oct 201911

Portability layers using HIP
Several portability layers are already supporting, or implementing, HIP

 RAJA⁃ HIP kernel execution policies syntactically identical to CUDA⁃ Official PRs under review
 Kokkos⁃ HIP kernel execution policies syntactically identical to CUDA⁃ Support is in Alpha and under development by Kokkos and AMD developers
 OCCA⁃ OKL kernels can compile for HIP devices⁃ Available in OCCA’s master branch
 OpenMP 5.0⁃ gcc and AMD’s aomp compilers support target offload regions, interop with HIP

| Frontier Application Readiness Kick-Off Workshop | Oct 201912

Tuning HIP Applications for Frontier

| Frontier Application Readiness Kick-Off Workshop | Oct 201913

Device Management
Host can query number of devices visible to system:

int numDevices = 0;
hipGetDeviceCount(&numDevices);

Each MPI rank can select a particular device on a node:
int rank;
MPI_Comm_rank(comm, &rank);
hipSetDevice(rank % numDevices);

The host can manage several devices by swapping the currently selected device during runtime.

Typical case is for each rank to manage its own GPU.

| Frontier Application Readiness Kick-Off Workshop | Oct 201914

Device Kernels: The Grid
 In HIP, kernels are executed on a ”grid”
 The “grid” is what you will map your problem to⁃ Your algorithm may not map to a grid, but it can be useful to think that way
 AMD devices (GPUs) support 1D, 2D, and 3D grids.
 Each dimension of the grid partitioned into equal sized “blocks”
 Each block is made up of multiple “threads”
 The grid and its associated blocks are just organizational constructs⁃ The threads are the things that do the work
 If you’re familiar with CUDA already, the grid+blockstructure is identical in HIP

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

Grid

Block Thread

15

SIMD operations
There is a natural mapping of blocks & threads to hardware:
 Blocks are dynamically scheduled onto GPU Compute Units (CUs)
 All threads in a block execute on the same CU
 Threads in a block share Local Data Share (LDS) memory and L1 cache
 Threads in a block are execute in 64-wide chunks called “wavefronts”
 Wavefronts execute on a SIMD units (Single Instruction Multiple Data)
 If a wavefront stalls (e.g. data dependency) CUs can quickly context switch to another wavefront

Good practice is to make the block size a multiple of 64 and have several wavefronts (e.g. at least 256 threads)

When every CU on a GPU has many wavefronts executing, the kernel is said to have high ‘occupancy’.

| Frontier Application Readiness Kick-Off Workshop | Oct 201916

SIMD Execution
After entering a kernel, all device code is executed on SIMD units.
 Branching logic (if – else) can be costly:⁃ Wavefront encounters an if statement ⁃ Evaluates conditional⁃ If true, continues to statement body⁃ If false, also continues to statement body with all instructions replaced with NoOps⁃ Known as ‘thread divergence’
 Generally, wavefronts diverging from each other is okay
 Thread divergence within a wavefront can significantly impact performance
 E.g. Both for loops are executed in order:

if (threadIdx.x % 2 == 0) {
for (int i=0;i<1000;i++) d_a[id+i] *= 2.0;

else
for (int i=0;i<1000;i++) d_a[id+i] /= 2.0;

| Frontier Application Readiness Kick-Off Workshop | Oct 201917

Memory Hierarchy in Device Code
Several types of memory accessible in device code (Ordered generally slowest to fastest):
 Pinned Host Memory
 Unified Virtual Memory (UVM)
 Device Global Memory
 Local Data Share (LDS)
 Vector/Scalar Registers

| Frontier Application Readiness Kick-Off Workshop | Oct 201918

Memory in Device Code
 Threads by default can dereference pinned host memory in device code:⁃ Memory allocated by hipHostMalloc() (more details later)⁃ Data travels over host<->device data fabric (e.g. PCIe®)⁃ Access will likely be slow compared to other memory types.

 Threads can all access pointers to Unified Virtual Memory:⁃ Memory allocated by hipMallocManaged()⁃ Memory is automatically migrated between host and device by the HIP runtime⁃ Can have significant overhead, even when memory is already resident on device⁃ Sometimes useful to use UVM in porting process ⁃ Highly recommended to migrate away from UVM usage for performance sensitive regions.

 Threads can all access device global memory via device pointers:⁃ Memory allocated by hipMalloc()⁃ Access is slow compared to more local memory (registers and LDS)⁃ Bandwidth can be significantly improved if the wavefront accesses memory in coalesced fashion (more later)

| Frontier Application Readiness Kick-Off Workshop | Oct 201919

Memory in Device Code
 Stack variables declared in device code are allocated in vector registers, entries private to each thread:⁃ Access is very fast⁃ There is a limited amount of register space available per thread⁃ If all threads in a wavefront access a common value, scalar register can be used instead
 Stack variables declared as __shared__:⁃ Allocated in Local Data Share (LDS), a.k.a. shared memory⁃ Variables are shared and accessible by all threads in the same block⁃ Access is significantly (~10x) faster than device global memory (but slower than register)⁃ LDS coherency often requires block-level synchronization (__syncthreads())

| Frontier Application Readiness Kick-Off Workshop | Oct 201920

Shared Memory Example
__global__ MatVec(const double *A, const double *x, double* Ax) {
const int myrow = threadIdx.x; //assume one block

//Ax = A*x
double r_Ax = 0.0; // accumulate answer in register
for (int i=0; i<512; i++) {
r_Ax += A[i+512*myrow]*x[i];

}

//write out result
Ax[myrow] = r_Ax;

}

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

• Each thread streams through its row of the matrix
• Each thread uses all the values in the x vector
• If we put x in shared memory, can load it once and all threads can re-use it.

21

Shared Memory Example
__global__ MatVec(const double *A, const double *x, double* Ax) {
const int myrow = threadIdx.x; // assume one block
__shared__ double s_x[512];
if (myrow < 512) s_x[myrow] = x[myrow];
__syncthreads(); // ensures all of s_x has been loaded
//Ax = A*x
double r_Ax = 0.0; // accumulate answer in register
for (int i=0; i<512; i++) {

r_Ax += A[i+512*myrow]*s_x[i];
}
//write out result
Ax[myrow] = r_Ax;

}
| Frontier Application Readiness Kick-Off Workshop | Oct 201922

Coalesced Memory Access
When accessing device global memory on AMD GPUs, bandwidth may be significantly increased if the access is coalesced across the wavefront.

Coalesced access means consecutive threads in a wavefront access consecutive memory locations

| Frontier Application Readiness Kick-Off Workshop | Oct 201923

Coalesced Memory Access
Coalescing of a wavefront’s memory access occurs at the hardware level.

Whenever possible, the memory controller turns the whole wavefront’s request into a single coalesced memory request.

As a result, the wavefront’s coalesced access could be swizzled, but still be coalesced by the memory controller.

| Frontier Application Readiness Kick-Off Workshop | Oct 201924

Coalesced Memory Access
Experiment on wavefront coalescing:
 Kernel doing loads/stores of 64 floats in each wavefront
 Order of access is swizzled at the wavefront level

a[id + threadIdx.x] = b[id + (threadIdx.x+ swizzle)%64];

 Results show bandwidth insensitive to swizzling (e.g., changing the order of access along the wavefront)
 Max 1% performance drop in relative bandwidth.
 Performance drop even less noticeable with more data movement in kernel (e.g. repeated reads/writes).

| Frontier Application Readiness Kick-Off Workshop | Oct 201925

Strided Memory Access
A common access pattern is a strided memory access within a wavefront
 Thread 0 loads a value from address A, thread 1 from address A+1*stride, thread 2 from A+2*stride, etc.
 Common in structured grid problems
 Very common when using array-of-structures, rather than structures-of-arrays
 Can have severe impact on achieved bandwidth

| Frontier Application Readiness Kick-Off Workshop | Oct 201926

Strided Memory Access
Experiment on strided access:
 Kernel doing loads/stores of 64 floats in each wavefront
 Access is strided

a[id + threadIdx.x] = b[(id + threadIdx.x) *stride];

 Stride = 1 corresponds to coalesced access (peak bandwidth)
 Stride = 2 immediate degrades bandwidth to near 50% of peak.
 By stride = 16, a separate cache line must be loaded for each thread’s memory request

| Frontier Application Readiness Kick-Off Workshop | Oct 201927

Coalesced Memory Example
__global__ MatVec(const double *A, const double *x, double* Ax) {
const int myrow = threadIdx.x; // assume one block
__shared__ double s_x[512];
if (myrow < 512) s_x[myrow] = x[myrow];
__syncthreads(); // ensures all of s_x has been loaded
//Ax = A*x
double r_Ax = 0.0; // accumulate answer in register
for (int i=0; i<512; i++) {

r_Ax += A[i+512*myrow]*s_x[i];
}
//write out result
Ax[myrow] = r_Ax;

}
| Frontier Application Readiness Kick-Off Workshop | Oct 2019

• Strided access for the matrix entries
• Better to store A in column-major format

28

Coalesced Memory Example
__global__ MatVec(const double *A, const double *x, double* Ax) {
const int myrow = threadIdx.x; // assume one block
__shared__ double s_x[512];
if (myrow < 512) s_x[myrow] = x[myrow];
__syncthreads(); // ensures all of s_x has been loaded
//Ax = A*x
double r_Ax = 0.0; // accumulate answer in register
for (int i=0; i<512; i++) {

r_Ax += A[i*numRows+myrow]*s_x[i];
}
//write out result
Ax[myrow] = r_Ax;

}
| Frontier Application Readiness Kick-Off Workshop | Oct 201929

Asynchronous computing with HIP

| Frontier Application Readiness Kick-Off Workshop | Oct 201930

Blocking vs Nonblocking API functions
 The kernel launch function, hipLaunchKernelGGL, is non-blocking for the host. ⁃ After sending instructions/data, the host continues immediately while the device executes the kernel⁃ If you know the kernel will take some time, this is a good area to do some work (i.e. MPI comms) on the host
 However, hipMemcpy is blocking. ⁃ The data pointed to in the arguments is safe to access/modify after the function returns.

 The non-blocking version is hipMemcpyAsync
hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

 Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

 It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

| Frontier Application Readiness Kick-Off Workshop | Oct 201931

Streams
 A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events). ⁃ Tasks enqueued in a stream must complete in order on that stream.⁃ Tasks being executed in different streams are allowed to overlap and share device resources.

 Streams are created via:
hipStream_t stream;
hipStreamCreate(&stream);

 And destroyed via:
hipStreamDestroy(stream);

 Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a special stream called the ‘NULL Stream’:⁃ This stream is special⁃ No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.⁃ Blocking calls like hipMemcpy always run on the NULL stream.

| Frontier Application Readiness Kick-Off Workshop | Oct 201932

Streams
 With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1, dim3(1), dim3(256), 0, stream1, 256, d_a1);
hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), 0, stream2, 256, d_a2);
hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), 0, stream3, 256, d_a3);
hipLaunchKernelGGL(myKernel4, dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Be sure that the kernels modify different parts of memory to avoid data races.
Note 2: With large kernels, overlapping computations may not help performance.

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

NULL Stream
Stream1
Stream2
Stream3
Stream4

myKernel1
myKernel2
myKernel3
myKernel4

33

Streams
 There is another use for streams besides concurrent kernels: ⁃ Overlapping kernels with data movement.

 AMD GPUs have separate engines for: ⁃ Host->Device memcpys⁃ Device->Host memcpys⁃ Device->Device memcpys⁃ Compute kernels.
 These different operations can overlap without dividing the GPU’s resources.⁃ The overlapping operations must be in separate, non-NULL, streams. ⁃ Any host memory must be pinned.⁃ Malloc’d with hipHostMalloc()⁃ This also significantly increases regular Host<->Device memcpy bandwidth

| Frontier Application Readiness Kick-Off Workshop | Oct 201934

Pinned Host Memory
Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned instead.

 Allocating pinned host memory:
double *h_a = NULL;
hipHostMalloc(&h_a, Nbytes);

 Free pinned host memory:
hipHostFree(h_a);

 Host<->Device memcpy bandwidth increases significantly when host memory is pinned. ⁃ It is good practice to allocate host memory that is frequently transferred to/from the device as pinned memory.

| Frontier Application Readiness Kick-Off Workshop | Oct 201935

Streams
Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));
hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);
hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);
hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3);
hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);
hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);
hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

NULL Stream myKernel1 myKernel2 myKernel3HToD1 HToD2 HToD3 DToH1 DToH2 DToH3

36

Streams
Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);
hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);
hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);
hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1);
hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2);
hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);
hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);
hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);
hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

NULL Stream
Stream1
Stream2
Stream3

myKernel1
myKernel2

myKernel3

HToD1
HToD2

HToD3

DToH1
DToH2

DToH3

37

Streams
A common use-case for streams is MPI traffic:

hipLaunchKernelGGL(haloGather, blocks, threads, 0, computeStream, N, d_a, d_commBuffer); //Gather halo data
hipStreamSynchronize(computeStream); //Wait for gather to complete

hipLaunchKernelGGL(localKernel, blocks, threads, 0, computeStream, N, d_a); //Local computation
hipMemcpyAsync(d_commBuffer, h_commBuffer, Nbytes, hipMemcpyDeviceToHost, dataStream); //copy to host
hipStreamSynchronize(dataStream); //Wait for data to arrive

MPI_Data_Exchange(h_commBuffer); //Exchange data with MPI

hipMemcpyAsync(h_commBuffer, d_commBuffer, Nbytes, hipMemcpyHostToDevice, dataStream); //copy back to device
hipStreamSynchronize(dataStream); //Wait for data to arrive

hipLaunchKernelGGL(haloScatter, blocks, threads, 0, computeStream, N, d_a, d_commBuffer); //Scatter halo data
hipLaunchKernelGGL(haloKernel, blocks, threads, 0, computeStream, N, d_a); //Halo computation

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

NULL Stream
computeStream
dataStream

localKernel
HToDDToH

MPI
38

Gather Scatter haloKernel

Streams
With a GPU-aware MPI stack, the Host<->Device traffic can be omitted:

hipLaunchKernelGGL(haloGather, blocks, threads, 0, computeStream, N, d_a, d_commBuffer); //Gather halo data
hipEventRecord(gatherEvent, computeStream); //Record end of gather

hipLaunchKernelGGL(localKernel, blocks, threads, 0, computeStream, N, d_a); //Queue Local computation

hipEventSynchronize(gatherEvent); //Wait for gather kernel to complete

MPI_Data_Exchange(d_commBuffer); //Exchange data with MPI (using device buffer)

hipLaunchKernelGGL(haloScatter, blocks, threads, 0, computeStream, N, d_a, d_commBuffer); //Scatter halo data
hipLaunchKernelGGL(haloKernel, blocks, threads, 0, computeStream, N, d_a); //Halo computation

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

NULL Stream
computeStream localKernel

MPI
39

Gather Scatter haloKernel

Host/Device Synchronization
To avoid idle time on host and/or device, be aware of how and when the host is synchronizing with the devices’ streams:

 hipDeviceSynchronize();⁃ Heavy-duty sync point.⁃ Blocks host until all work in all device streams has reported complete.
 hipStreamSynchronize(stream);⁃ Blocks host until all work in stream has reported complete.
 hipEventSynchronize(event);⁃ Block host until event reports complete.⁃ Only a synchronization point with respect to the stream where event was enqueued.
 hipStreamWaitEvent(stream, event);⁃ Non-blocking for host.⁃ Instructs all future work submitted to stream to wait until event reports complete.⁃ Primary way we enforce an ‘ordering’ between tasks in separate streams.

| Frontier Application Readiness Kick-Off Workshop | Oct 201940

Summary of Optimization Tips

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

 Multiple wavefronts per CU (i.e. high occupancy) important to latency hiding and instruction throughput⁃ High register usage and/or LDS usage can reduce CU occupancy⁃ LDS access is O(10) times faster than global memory⁃ LDS usage can improve overall bandwidth, often worth the occupancy reduction⁃ High occupancy is not a silver bullet
 Unified virtual memory is useful for ease of porting, but should be phased out ASAP for performance
 Memory coalescing dramatically increases bandwidth of load/store to LDS and global memory
 Reordering instructions to prefetch data to registers can help the scheduler issue loads earlier
 Unrolling loops allows compiler and scheduler to issue many loads/stores at once⁃ May reduce occupancy⁃ Register space spills to L1 cache, then to L2 cache, then to global device memory
 Important to issue enough work to fill all CUs⁃ Many small kernels can suffer launch latency overheads
 Important to shift application from being GPU-accelerated to GPU-resident

41

Optimization Tips (Advanced)

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

 AMD’s GCN assembly code (ISA) is completely open⁃ https://developer.amd.com/resources/developer-guides-manuals/
 To inspect GPU kernel assembly code, you can run extractkernel on your binary⁃ Should obtain a .isa file⁃ Can also set KMDUMPISA=1 at link time to extract the .isa automatically

⁃ s_* : Scalar unit instructions⁃ v_* : SIMD unit instructions⁃ global_* : Global memory load/store⁃ ds_* : LDS memory load/store
 Lots of preamble data to check register use
 Can check things like #pragma unroll effects in your kernel assembly
42

QUESTIONS?

| Frontier Application Readiness Kick-Off Workshop | Oct 201943

DISCLAIMER

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

DISCLAIMERThe information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. All open source software listed in this presentation is governed by the associated open source license. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18
©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, Threadripper, EPYC, Infinity Fabric, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
PCIe is a trademark (or registered trademark) of PCI-SIG Corporation.
OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.
Linux is a trademark (or registered trademark) of Linus Torvalds.
44

Kernel time with events
Finally, another useful feature of streams is kernel timing with events:

A hipEvent_t object is created on a device via:
hipEvent_t event;
hipEventCreate(&event);

And queued into a stream via:
hipEventRecord(event, stream);⁃ The event records what work is currently enqueued in the stream.⁃ When the stream’s execution reaches the event, the event is considered ‘complete’.

Once completed, we can measure the time between two events:
hipEventElapsedTime(&time, startEvent, endEvent);⁃ Returns the time in ms between when two events, startEvent and endEvent, completed⁃ Very useful for timing kernels/memcpys

| Frontier Application Readiness Kick-Off Workshop | Oct 201945

Note on Atomic Operations
Atomic functions:
 Perform a read+write of a single 32 or 64-bit word in device global or LDS memory
 Can be called by multiple threads in device code
 Guaranteed to be performed in a conflict-free manner

 AMD GPUs support atomic operations on 32-bit integers in hardware⁃ Float /double atomics are currently implemented as atomicCAS (Compare And Swap) loops, may have poor performance
 Can check at compile time if 32 or 64-bit atomic instructions are supported on target device⁃ #ifdef __HIP_ARCH_HAS_GLOBAL_INT32_ATOMICS__⁃ #ifdef __HIP_ARCH_HAS_GLOBAL_INT64_ATOMICS__

| Frontier Application Readiness Kick-Off Workshop | Oct 201946

Atomic Operations

Operation Type, T Notes
T atomicAdd(T* address, T val) int, long long int, float, double Adds val to *address
T atomicExch(T* address, T val) int, long long int, float Replace *address with val and return old value
T atomicMin(T* address, T val) int, long long int Replaces *address if val is smaller
T atomicMax(T* address, T val) int, long long int Replaces *address if val is larger
T atomicAnd(T* address, T val) int, long long int Bitwise AND between *address and val
T atomicOr(T* address, T val) int, long long int Bitwise OR between *address and val
T atomicXor(T* address, T val) int, long long int Bitwise XOR between *address and val

| Frontier Application Readiness Kick-Off Workshop | Oct 2019

Currently supported atomic operations in HIP:

47

