Profiling Tools Training Workshop Issues and Lessons Learned

Summit Profiling Tools Workshop Oak Ridge National Laboratory

George S. Markomanolis Mike Brim

9 August 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Extrae/Paraver Issues & Lessons Learned

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Non-Capability Matrix – Extrae

3

Capability	Profiling	Tracing	Notes/Limitations
MPI, MPI-IO			
OpenMP CPU			
OpenMP GPU	Х	Х	PGI compiler with OpenMP is not supported. XL compiler is not supported Missing a lot of data regarding GPU
OpenACC	Х	Х	No support
CUDA	Х	Х	Missing a lot of data regarding GPU
POSIX I/O			
POSIX threads			
Memory – app-level			
Memory – function-level			
Hotspot Detection			
Variance Detection			
Hardware Counters			

Issue #1: Merging of the traces cause errors

- Extrae creates traces and then a parallel tool merges them. This tool, which required a separate jsrun, causes errors and segmentation files.
- Solution: Merge in a separate job

Issue #2: Not enough data to instrument GPU

• Extrae instruments codes with CUDA but not many events are recorded, thus it is not possible to analyze the performance of such applications

Lessons Learned

- For compilation is required to activate the debug mode for your application.
- Paraver, the visualization tool has a significant learning curve, no guided analysis
- Paraver is one of the best tools to analyze OpenMP tasks.
- With the cut/filter functionalities we can visualize part of a large trace and identify bottlenecks

Score-P Issues & Lessons Learned

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Non-Capability Matrix – Score-P

Capability	Profiling	Tracing	Notes/Limitations
MPI, MPI-IO			
OpenMP CPU			
OpenMP GPU	Х	Х	instrumented code failed to link
OpenACC			
CUDA	Х		Score-P runtime error during profiling
POSIX I/O			
POSIX threads			
Memory – app-level			
Memory – function-level			
Hotspot Detection			
Variance Detection			
Hardware Counters		Х	NVIDIA GPU kernel counters (all zeroes)

8

Issue #1: Code Instrumentation Problems

- Fortran with OpenMP
 - Problem: runtime error
 - Solution: use '--pdt' option
- CUDA with OpenMP
 - Problem: nvcc compile error
 - Solution: use options '--noopenmp --thread=none'
- OpenMP target
 - Problem: nvcc link error
 - Solution: TBD

+ scorep --cuda xlc_r -03 -qsmp=omp -<u>qoffload</u> -<u>anostrict</u> -qtgtarch=sm_70 -o nuccor_dgemm nuccor_dgemm.o get_wall_time.o nvcc fatal : Don't know what to do with 'valloc' [Score-P] ERROR: Execution failed: xlc_r nuccor_dgemm.scorep_init.o nuccor_dgemm.opari2_init.o nuccor_dgemm.o get_wall_time.o `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/scorep-config --thread=omp --mpp=n one --io=none --mutex=none --noonline-access --preprocess --noopencl --noopenacc --memory=libc --constructor` `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/scorep-config --thread=omp --mpp=none --io=none -mutex=none --noonline-access --preprocess --noopencl --noopenacc --memory=libc --ldflags` -03 -qsmp=omp -qoffload -gnostrict -qtgtarch=sm_70 -Wl,-start-group `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/s corep-config --thread=omp --mpp=none --io=none --mutex=none --noonline-access --preprocess --noopenacc --memory=libc --event-libs` -Wl,-end-group `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/s corep-config --thread=omp --mpp=none --io=none --mutex=none --noonline-access --preprocess --noopenacc --memory=libc --event-libs` -Wl,-end-group `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/s corep-config --thread=omp --mpp=none --io=none --mutex=none --noonline-access --preprocess --noopenacc --memory=libc --event-libs` -wl,-end-group `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/s corep-config --thread=omp --mpp=none --io=none --mutex=none --noonline-access --preprocess --noopencl --noopenacc --memory=libc --event-libs` -wl,-end-group `/sw/summit/scorep/6.0/xl-16.1.1-3/bin/s

Issue #2: Inability to filter certain APIs

- MPI, OpenACC, etc. cannot be excluded
 - believed to be an issue with mechanism for intercepting APIs
- May limit user ability to produce reasonable trace sizes

> scorep-score -f all.filter profile.cubex

Estimated aggregate size of event trace: 559MB Estimated requirements for largest trace buffer (max_buf): 50MB Estimated memory requirements (SCOREP_TOTAL_MEMORY): 52MB (hint: When tracing set SCOREP_TOTAL_MEMORY=52MB to avoid intermediate flushes or reduce requirements using USR regions filters.)

Flt	type	<pre>max_buf[B]</pre>	visits	<pre>time[s]</pre>	<pre>time[%]</pre>	<pre>time/visit[us]</pre>	region
-	ALL	56,251,529	21,259,014	443.14	100.0	20.84	ALL
-	OPENACC	40,727,960	17,312,520	79.20	17.9	4.57	OPENACC
-	MPI	11,311,476	2,002,458	333.18	75.2	166.38	MPI
-	COM	4,212,052	1,944,024	30.76	6.9	15.82	COM
-	SCOREP	41	12	0.00	0.0	87.02	SCOREP
*	ALL	52,039,477	19,314,990	412.38	93.1	21.35	ALL-FLT
-	OPENACC	40,727,960	17,312,520	79.20	17.9	4.57	OPENACC-FLT
-	MPI	11,311,476	2,002,458	333.18	75.2	166.38	MPI-FLT
+	FLT	4,212,052	1,944,024	30.76	6.9	15.82	FLT
-	SCOREP	41	12	0.00	0.0	87.02	SCOREP-FLT

e.g., only COM regions end up filtered

Issue #3: CUDA Profiling

- Problem: Enabling CUDA in profiling mode resulted in LSMS abort
- Solution: TBD

CUDA Profiling Error (Region Exit Mismatch)

> cat stderr.txt

[Score-P] src/measurement/profiling/scorep_profile_event_base.c:188: Error: Inconsistent profile. Stop profiling: Exit event for other than current region occurred at location 6: Expected exit for region 'cudaLaunchKernel'. Exited region 'cudaLaunchKernel'

[Score-P] src/measurement/profiling/scorep_profile_debug.c:223: Fatal: Cannot continue profiling. Activating core files (export SCOREP_PROFILING_ENABLE_CORE_FILES=1) might provide more insight.

[Score-P] Please report this to support@score-p.org. Thank you.

[Score-P] Try also to preserve any generated core dumps.

[a28n16:24662] *** Process received signal ***

[a28n16:24662] Signal: Aborted (6)

[a28n16:24662] Signal code: (-6)

[a28n16:24662] [0] [0x2000000504d8]

[a28n16:24662] [1] /lib64/libc.so.6(gsignal+0x60)[0x20000a42fbf0]

[a28n16:24662] [2] /lib64/libc.so.6(abort+0x18c)[0x20000a431f6c]

[a28n16:24662] [3]

/sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(SCOREP_UTILS_Error_Abort+0x34)[0x20000803db54]
[a28n16:24662] [4]

/sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(scorep_profile_on_error+0x284)[0x2000080151d4]
[a28n16:24662] [5]

/sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(scorep_profile_exit+0x1e4)[0x200008013784]
[a28n16:24662] [6]

/sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(SCOREP_Profile_Exit+0xf0)[0x20000800a530]

[a28n16:24662] [7] /sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(+0x7ae04)[0x20000800ae04] [a28n16:24662] [8]

/sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_measurement.so.0(SCOREP_Location_ExitRegion+0xd0)[0x200007fe20d0]

[a28n16:24662] [9] /sw/summit/scorep/6.0/gcc-6.4.0/lib/libscorep_adapter_cuda_mgmt.so.0(+0xc9dc)[0x20000855c9dc]

[a28n16:24662] [10] /sw/summit/cuda/10.1.105/extras/CUPTI/lib64/libcupti.so.10.1(+0xef198)[0x20000989f198]

11

Issue #4: Sampling Mode with Unwinding

- Problem: Enabling samplin(export SCOREP_ENABLE_TRACING=yes export SCOREP_ENABLE_UNWINDING=true mode causes MiniWeather export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000 segfaults > gdb ./bin/miniweather_mpi_openmp core.xxxx
 - for both C and Fortran
- Solution: TBD

Core was generated by `miniWeather mpi openmp '. Program terminated with signal 11, Segmentation fault. #0 ULppc64 step (cursor=0x200018d098b0) at ppc64/Gstep.c:457 ppc64/Gstep.c: No such file or directory. 457 Missing separate debuginfos, use: debuginfo-install glibc-2.17-260.el7 6.6.ppc64le libatomic-4.8.5-36.el7 6.2.ppc64le libgcc-4.8.5-36.el7_6.2.ppc64le libibverbs-41mlnx1-OFED.4.5.0.1.0.45229.ppc64le libmlx4-41mlnx1-0FED.4.5.0.0.3.45229.ppc64le libmlx5-41mlnx1-0FED.4.5.0.3.8.45229.ppc64le libnl3-3.2.28-4.el7.ppc64le librxe-41mlnx1-OFED.4.4.2.4.6.45229.ppc64le libstdc++-4.8.5-36.el7 6.2.ppc64le numactl-libs-2.0.9-7.el7.ppc64le xz-libs-5.2.2-1.el7.ppc64le zlib-1.2.7-18.el7.ppc64le (gdb) bt #0 _ULppc64_step (cursor=0x200018d098b0) at ppc64/Gstep.c:457 #1 0x00002000007a3e7c in slow backtrace (uc=0x200018d0aa30, size=32, buffer=0x200018d0b070) at mi/backtrace.c:45 #2 unw backtrace (buffer=0x200018d0b070, size=<optimized out>) at mi/backtrace.c:72 #3 0x0000200002238f0c in opal backtrace print () from /opt/ibm/spectrum mpi/jsm pmix/../lib/libopen-pal.so.3 #4 0x000020000223222c in show stackframe () from /opt/ibm/spectrum mpi/jsm pmix/../lib/libopen-pal.so.3 #5 <signal handler called> #6 _ULppc64_step (cursor=0x2000023b46e8) at ppc64/Gstep.c:457 #7 0x00002000003bc4c8 in get_current_stack (unwindData=0x2000023b40f8) at ../src/services/unwinding/scorep unwinding cpu.c:438 #8 0x00002000003bd218 in scorep unwinding cpu handle enter (unwindData=0x2000023b40f8, contextPtr=0x200018d0d130, instrumentedRegionHandle=0, callingContext=0x200018d0d01c, unwindDistance=0x200018d0d014, previousCallingContext=0x200018d0d018) at ../src/services/unwinding/scorep unwinding cpu.c:802

Issue #5: OpenACC hides CUDA

- Problem: Despite '--cuda', OpenACC profiles/traces show no CUDA-level interactions
- Solution: TBD

Issue #6: Large Trace Analysis

- Problem: VampirServer takes way too long to load large traces
 - investigate how to make it use more processes
 - check that servers are being effectively placed across Summit node cores
- Solution: TBD

Lessons Learned

- General Performance Analysis Methodology
 - Starting with existing application test cases covering different scales is essential
- Profiling mode is relatively lightweight
 - and very useful for pre-trace filtering
- Filtering
 - is required before tracing C++
 - is highly recommended for focused tracing of large-scale runs
- Using Vampir and Cube on local desktop is easy and useful
 - best when combined with remote file access (e.g., sshfs), since you don't need to move files between systems

Scalasca Issues & Lessons Learned

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Non-Capability Matrix – Scalasca

Capability	Profiling	Tracing	Notes/Limitations
MPI, MPI-IO			
OpenMP CPU			
OpenMP GPU	Х	Х	No information displayed for the GPU
OpenACC	Х	Х	
CUDA	Х	Х	No information displayed
POSIX I/O			
POSIX threads			
Memory – app-level			
Memory – function-level	Х	Х	
Hotspot Detection			
Variance Detection			
Hardware Counters		Х	NVIDIA GPU kernel counters (all zeroes)

17

Issue #1: Installation

- Scalasca requires Score-P:
 - The available Score-P version, was not supporting PGI compiler on Power processor
 - Score-P team provided a special version
 - Now the Score-P v6.0 supports PGI on Power processor
 - Too may dependencies, used Spack to avoid a lot of compilations

Issue #2: Stability

- Scalasca crashes when we try to open the documentation (it could be related to our systemjava).
- Solution: TBD

Lessons Learned

- Pattern Analysis
 - The sophisticated and automatic pattern analysis provides the essential information to understand better the insight of an application
- For instrumentation, it is used the Score-P tool with all its benefits
- It is not complicated to apply the pattern analysis on a large execution
- Cube is an easy and useful interface where with just a glimpse we can observe many different performance aspects
- The compilation of an application with Score-P sometimes is not straightforward

TAU Issues & Lessons Learned

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Non-Capability Matrix – TAU

Capability	Profiling	Tracing	Notes/Limitations
MPI, MPI-IO			
OpenMP CPU			
OpenMP GPU			
OpenACC		Х	No CUPTI metrics
CUDA		Х	There was issue with CUPTI metrics
POSIX I/O			
POSIX threads			
Memory – app-level			
Memory – function-level			
Hotspot Detection			
Variance Detection			
Hardware Counters		Х	Issues about using CUPTI metrics

22

Issue #1: Installation

- Required support from the TAU team regarding some MPI options for the configuration on Spectrum MPI
- An error about -hwloc appeared and the TAU team fixed the bug

Issue #2: tau_exec was not working

• We were getting strange errors with tau_exec:

ERROR: Id.so: object '/autofs/nccs-svm1_sw/summit/.swci/1-com' from LD_PRELOAD cannot be preloaded: ignored.

ERROR: Id.so: object 'ute/o' from LD_PRELOAD cannot be preloaded: ignored.

ERROR: Id.so: object 't/s' from LD_PRELOAD cannot be preloaded: ignored.

ERROR: Id.so: object 'ack/20180914/linux-rhel7-' from LD_PRELOAD cannot be preloaded: ignored.

• Solution:

We found in tau_exec script a command that was replacing some characters on the LD_PRELOAD which was not working on our system, we commented this command and the problem solved

Issue #3: Instrumentation with CUDA

• Problem:

Error: nvcc fatal : A single input file is required for a non-link phase when an outputfile is specified

• Solution:

Using a TAU_MAKEFILE with the PAPI enabled, causes issues as we add another library to be linked in a non-link phase. By creating a TAU_MAKEFILE without PAPI, solved this issue.

Issue #4: CUPTI error

• Problem1:

TAU: CUPTI error in cuptiActivityEnable (CUPTI_ACTIVITY_KIND_ENVIRONMENT): CUPTI_ERROR_NOT_COMPATIBLE

• Solution1:

TAU team could reproduce this issue and provided a fix.

• Problem2:

After the above fix, I had this error: TAU: Error: Unknown metric: CUDA.Tesla_V100-SXM2-16GB.domain_d.active_warps

TAU: Error: Unknown metric: CUDA.Tesla_V100-SXM2-16GB.domain_d.active_cycles

• Solution2:

Another bug fixed

Issue #5: Memory Error

• Problem:

We got the error: "Tau_MemMgr_malloc: MMAP MAX MEMBLOCKS REACHED!" during the instrumentation of an application.

• Solution:

We should configure TAU with -DISABLE_MEMORY_MANAGER. TAU team created a patch to fix this issue for the newer version.

Issue #6: File formats for visualization

- The tau2otf tool supports only MPI and OpenSHMEM
- The tau2slog tool worked but jumpshot crashed because of an error

Issue #7: Instrumentation of MPI+OpenMP+CUDA

• Problem:

Error: Only counters for a single GPU device model can be collected at the same time.

• Solution: TBD

Lessons Learned

- TAU is a instrumentation tool that tries to cover many different topics with low overhead for profiling
- Metrics for OpenACC instrumentation will be available until SC19
- It is required to use the tau_exec instrumentation approach for GPUs, although this probably will change soon
- TAU provides tools such as PerfExplorer to study the scalability of many experiments
- It is possible to instrument dynamic/static phases through the Program Database Toolkit
- User used the tau_exec to instrument an ocean model on the first day of hands-on sessions

Capability Matrix - Final

	Extrae	Score-P	Scalasca	TAU	
Capability	Profiling				
MPI, MPI-IO	\checkmark				
OpenMP CPU					
OpenMP GPU	×	×	×		
OpenACC	×		×		
CUDA	×	×	×		
POSIX I/O					
POSIX threads	\checkmark	\checkmark			
Memory – app-level					
Memory – function- level					
Hotspot Detection					
Variance Detection	\checkmark				
Hardware Counters				×	

CAK RIDGE

31

means that either functionality is not supported or something is not working as expected

Capability Matrix - Final

	Extrae	Score-P	Scalasca	TAU	
Capability	Tracing				
MPI, MPI-IO	\checkmark	\checkmark	\checkmark		
OpenMP CPU					
OpenMP GPU	×	×	×	×	
OpenACC	×		×	×	
CUDA	×	×	×	×	
POSIX I/O					
POSIX threads	\checkmark		\checkmark		
Memory – app-level					
Memory – function- level					
Hotspot Detection					
Variance Detection					
Hardware Counters		×	×	×	

32 **CAK RIDGE** National Laboratory means that either functionality is not supported or something is not working as expected Thank you! Questions?

