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Overview : DCA++
• DCA++ → Dynamical Cluster Approximation

• Numerical simulation tool — predict behaviors of co-related quantum materials 
(such as superconductivity, magnetism)

• DCA++ — computes many-body Green’s function — material’s properties can be 
calculated from this function. 

• Iterative self consistent algorithm — two primary kernels 

๏ Coarse graining of single particle Green’s function (reduces complexity of 
infinite size lattice problem)

๏ Quantum Monte Carlo solver 

DCA++: A software framework to solve correlated electron problems with modern quantum cluster methods. U. Hähner, et al. .CPC 2019.

DCA++ ran on Titan – 18600 nodes at16 Petaflop rate (peak), sustained 1.3 Petaflop rate [Gordon Bell 2009]
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DCA++ : Primary kernels workflow 

1. Coarse Graining 
(Calculating Green’s Function)

2. Quantum Monte Carlo solver 
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DCA++ : Quantum Monte Carlo Solver
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Profiling DCA++ on Titan
• Profiler used: HPCToolkit [Visualizer: HPCTraceviewer]

• DCA++ code: 

๏ Synthetic dataset (realistic to the science)
๏ Beta: 20
๏ Number of Titan nodes used: 10
๏ Number of MPI ranks used: 10 (1 rank per node)
๏ Iterations: 4 (till convergence)
๏ Last iteration step — performs the 4 point function

• Acknowledgment: Dr. John Mellor Crummey & Dr. Laksono Adihanto (Rice U.)
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Profiling DCA++ on Titan (using HPCToolkit)
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✤Each color in the trace — procedure calls

✤Last iteration — performs 4 point function

✤MPI ranks — performs similar computation
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Profiling DCA++ on Titan (using HPCToolkit)
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✤Top: 8 threads — OpenMP: performs the coarse graining 
operation

✤C++ standard threads: QMC Solver — with 5 
accumulator threads and 3 walker threads.

✤Bottom: 8 threads — shows the 4 point function

✤Red bars – mutex locks (single queue for accumulation) 
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Profiling DCA++ on Titan
• Profiler used: ScoreP [Visualizer: VAMPIR]

• DCA++ code: 

๏ Synthetic dataset (realistic to the science)
๏ Beta: 20
๏ Number of Titan nodes used: 20
๏ Number of MPI ranks used: 20 (1 rank per node)
๏ Iterations: 8 (till convergence)
๏ Last iteration step — performs the 4 point function

• Acknowledgment: Ronny Brendel (T.U. Dresden / ScoreP ; Currently: NVIDIA)
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Profiling DCA++ on Titan (using ScoreP)

✤Dark Blue: DGEMM copy (tiling of matrices)

✤Light Blue: DGEMM kernel using BLAS
(matrix multiplication)

✤Red and black lines: MPI Collectives (BCast / All 
Reduce) — at each iteration step
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Profiling DCA++ on Titan (using ScoreP)

✤Red and black lines: MPI Collectives (BCast / All 
Reduce) — at each iteration step

✤Load imbalance across MPI Ranks (nodes)

✤Each iteration step — a set of MPI_Allreduce

✤Each MPI reduce operation — ~ 8-10 secs
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Quantum Monte Carlo Solver (new code) 

“Walker – Accumulator” mapping: 1:1
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✤Lockless data-structure for the 
accumulator queue 

✤Thread pool for the CPU 
computation coarse graining / 
GPU driver threads

✤Accumulation now on the GPUs

✤Shared walker / accumulators: 
accumulation on a separate GPU 
stream

• Walkers continue random walk
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Profiling DCA++ on Titan (using HPCToolkit)
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• Iteration is computing 
the 4pt function

• Lockless data structure

Thread Pool (16 threads)



14

Profiling old / improved DCA++ on Summit
• Profiler used: 

NVProf (CUDA Toolkit)

TAU (SciDAC Institute) – Ongoing Collaboration 

HPC Toolkit (Rice University)– Ongoing Collaboration

• Versions of DCA++ code (compare and contrast): 
[Both codes are now publicly available: https://github.com/CompFUSE/DCA]

๏ Old Code [pre SciDAC] – version 1.0.0 

๏ New Code [March 10th , 2019] – Ongoing 

https://github.com/CompFUSE/DCA
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Input Parameters  [large case]
• Beta: 50
• Initial self-energy= “T= 0.02/dca_sp.hdf5”
• Iterations: 2
• Do-finite-qmc: true (coarse graining is ON) – Turned off for production run
• Measurements: 1020
• Cluster size: 24
• Initial configuration size: 3300
• Walkers: 7 (=h/w threads mapped)
• Accumulator: 5 
• Shared Walker / Accumulator: false 
• G4: ON (last iteration )

• Summit: 1 node :: 6 MPI ranks :: 1 rank/rs :: 1 rank/gpu :: smt1 :: 7 h/w threads /rs
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DCA++ Profile [ Old Code ]

✤QMC Time with G4: 1.6 hrs

✤GPU utilization: 0.2% (walkers)

✤White spaces – Accumulation on the CPU
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DCA++ Profile [ New Code ]

✤QMC Time with G4: 80 secs (72x improvement)

✤GPU utilization: 37% (walkers + accumulator)

✤Using 8 execution queues on the GPU
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DCA++ at scale on Summit (INCITE)

100                         500      1000     2000        4600

✤ Strong scaling : production run 

✤ Cluster size: 6 ( [6  0] [0   6] ) 
✤ 80M Measurements 

✤ 1 MPI Process / GPU

✤ ~ 3000 Measurements / rank

✤ 46% GPU utilization 

✤ Entire Summit (4600 nodes)

✤ Old Code – 9.65 hrs.
✤ New ‘Improved’ Code – 6.5 mins.

✤ Sustained performance: 43 PFLOPS
✤ Peak performance: 73.5 PFLOPS

✤ Peak power: 9MW [for 4600 nodes]
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Quantum Monte Carlo Solver (new code) 

“Walker – Accumulator” mapping: 1:1
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Challenges:

✤Number of walkers bound by 
the number of accumulators 

✤Memory / accumulator: 3GB

✤Larger cluster size – needs 
more walkers

o Private copy of ‘G4’ Matrix is 
stored on each Accumulator
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Ongoing efforts : SciDAC
• Single-band Hubbard model –> 2 / 3 – band Hubbard Model   

• Memory challenges for accumulators 

• Use of mixed precision (half-, single- and double precision) [Tensor cores]  

• Collaboration with TAU:
o TAU/CUDA initialization and CPU/GPU timestamp sync. on Power9 + NVIDIA (Summit)
o Updated CUDA support – multi-GPU nodes
o TAU data organization – for GPU streams
o Continuous Integration – performance database ( past / future developments )

• Autocorrelation time based on system size and number of measurements
o Time it takes for two measurements to be decorrelated and hence not biased configurations
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