
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Optimizing Dynamical Cluster Approximation
on the Summit supercomputer

Arghya Chatterjee
Performance Engineer, Scientific Computing Group
National Center for Computational Sciences (NCCS)
Aug 8, 2019

2

• I would like to thank:
Giovanni Balduzzi (PhD. Student, ETH Zurich)
Urs Hähner (PhD. Student, ETH Zurich)
Ying Wai Li (NCCS, ORNL)
Thomas Maier (CNMS, ORNL)
Thomas Schulthess (Director, CSCS, ETH Zurich)

• The profiling and optimization of DCA++ was supported by the Scientific Discovery
through Advanced Computing (sciDAC) program funded by U.S. DOE, Office of Science,
Advanced Computing Scientific Computing Research (ASCR) and Basic Energy Sciences
(BES), Division of Materials Science and Engineering.

• This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

•

SciDAC: Computational Framework for Unbiased Studies of
Correlated Electron Systems

3

Overview : DCA++
• DCA++ → Dynamical Cluster Approximation

• Numerical simulation tool — predict behaviors of co-related quantum materials
(such as superconductivity, magnetism)

• DCA++ — computes many-body Green’s function — material’s properties can be
calculated from this function.

• Iterative self consistent algorithm — two primary kernels

๏ Coarse graining of single particle Green’s function (reduces complexity of
infinite size lattice problem)

๏ Quantum Monte Carlo solver

DCA++: A software framework to solve correlated electron problems with modern quantum cluster methods. U. Hähner, et al. .CPC 2019.

DCA++ ran on Titan – 18600 nodes at16 Petaflop rate (peak), sustained 1.3 Petaflop rate [Gordon Bell 2009]

4

DCA++ : Primary kernels workflow

1. Coarse Graining
(Calculating Green’s Function)

2. Quantum Monte Carlo solver
(QMC)

Green’s
Function

[G0]

Initial Green’s Function
& Markov Chain

Iterative Convergence
Algorithm

Green’s
Function

[G]

2 particle
Green’s

Function [G4]

5

DCA++ : Quantum Monte Carlo Solver

N1

N3

N4

Walker 1

Accu. 3

Accu. 1

Walker 2

Accu. 2

N2 N2

N1

N3

N4

GN2’

GN2’’

GN2’’’

Green’s
Function

[G]

[G]

[G]

[G]

[G]

GN2

GN1

GN3

GN4

MPI
Communication

>106 samples

Threading MPI
Communication

Walkers running on GPU : Accumulators run on the CPU

6

Profiling DCA++ on Titan
• Profiler used: HPCToolkit [Visualizer: HPCTraceviewer]

• DCA++ code:

๏ Synthetic dataset (realistic to the science)
๏ Beta: 20
๏ Number of Titan nodes used: 10
๏ Number of MPI ranks used: 10 (1 rank per node)
๏ Iterations: 4 (till convergence)
๏ Last iteration step — performs the 4 point function

• Acknowledgment: Dr. John Mellor Crummey & Dr. Laksono Adihanto (Rice U.)

7

Profiling DCA++ on Titan (using HPCToolkit)
M

PI
 R

an
ks

 +
 T

hr
ea

ds

Iterations [execution time]

✤Each color in the trace — procedure calls

✤Last iteration — performs 4 point function

✤MPI ranks — performs similar computation

8

Profiling DCA++ on Titan (using HPCToolkit)
C

++
 s

td
th

re
ad

s
O

pe
nM

P

✤Top: 8 threads — OpenMP: performs the coarse graining
operation

✤C++ standard threads: QMC Solver — with 5
accumulator threads and 3 walker threads.

✤Bottom: 8 threads — shows the 4 point function

✤Red bars – mutex locks (single queue for accumulation)

9

Profiling DCA++ on Titan
• Profiler used: ScoreP [Visualizer: VAMPIR]

• DCA++ code:

๏ Synthetic dataset (realistic to the science)
๏ Beta: 20
๏ Number of Titan nodes used: 20
๏ Number of MPI ranks used: 20 (1 rank per node)
๏ Iterations: 8 (till convergence)
๏ Last iteration step — performs the 4 point function

• Acknowledgment: Ronny Brendel (T.U. Dresden / ScoreP ; Currently: NVIDIA)

10

Profiling DCA++ on Titan (using ScoreP)

✤Dark Blue: DGEMM copy (tiling of matrices)

✤Light Blue: DGEMM kernel using BLAS
(matrix multiplication)

✤Red and black lines: MPI Collectives (BCast / All
Reduce) — at each iteration step

Iterations [execution time]

M
PI

 R
an

ks

11

Profiling DCA++ on Titan (using ScoreP)

✤Red and black lines: MPI Collectives (BCast / All
Reduce) — at each iteration step

✤Load imbalance across MPI Ranks (nodes)

✤Each iteration step — a set of MPI_Allreduce

✤Each MPI reduce operation — ~ 8-10 secs

Iterations [execution time]

M
PI

 R
an

ks

12

Quantum Monte Carlo Solver (new code)

“Walker – Accumulator” mapping: 1:1

N1

N3

N4

Walker 1

Walker 3

Walker 2

Walker 4

N2 N2

N1

N3

N4

G2’’’

G2’’’’

Green’s
Function

[G]

[G]

[G]

[G]

[G]

GN2

GN1

GN3

GN4

Both Walkers and Accumulators run on the GPU

Accu. 1

Accu. 2

Accu. 3

Accu. 4

G2’

G2’’

✤Lockless data-structure for the
accumulator queue

✤Thread pool for the CPU
computation coarse graining /
GPU driver threads

✤Accumulation now on the GPUs

✤Shared walker / accumulators:
accumulation on a separate GPU
stream

• Walkers continue random walk

13

Profiling DCA++ on Titan (using HPCToolkit)
M

PI
 R

an
ks

 +
 T

hr
ea

ds

Iterations [execution time]

• Iteration is computing
the 4pt function

• Lockless data structure

Thread Pool (16 threads)

14

Profiling old / improved DCA++ on Summit
• Profiler used:

NVProf (CUDA Toolkit)

TAU (SciDAC Institute) – Ongoing Collaboration

HPC Toolkit (Rice University)– Ongoing Collaboration

• Versions of DCA++ code (compare and contrast):
[Both codes are now publicly available: https://github.com/CompFUSE/DCA]

๏ Old Code [pre SciDAC] – version 1.0.0

๏ New Code [March 10th , 2019] – Ongoing

https://github.com/CompFUSE/DCA

15

Input Parameters [large case]
• Beta: 50
• Initial self-energy= “T= 0.02/dca_sp.hdf5”
• Iterations: 2
• Do-finite-qmc: true (coarse graining is ON) – Turned off for production run
• Measurements: 1020
• Cluster size: 24
• Initial configuration size: 3300
• Walkers: 7 (=h/w threads mapped)
• Accumulator: 5
• Shared Walker / Accumulator: false
• G4: ON (last iteration)

• Summit: 1 node :: 6 MPI ranks :: 1 rank/rs :: 1 rank/gpu :: smt1 :: 7 h/w threads /rs

16

DCA++ Profile [Old Code]

✤QMC Time with G4: 1.6 hrs

✤GPU utilization: 0.2% (walkers)

✤White spaces – Accumulation on the CPU

17

DCA++ Profile [New Code]

✤QMC Time with G4: 80 secs (72x improvement)

✤GPU utilization: 37% (walkers + accumulator)

✤Using 8 execution queues on the GPU

18

DCA++ at scale on Summit (INCITE)

100 500 1000 2000 4600

✤ Strong scaling : production run

✤ Cluster size: 6 ([6 0] [0 6])
✤ 80M Measurements

✤ 1 MPI Process / GPU

✤ ~ 3000 Measurements / rank

✤ 46% GPU utilization

✤ Entire Summit (4600 nodes)

✤ Old Code – 9.65 hrs.
✤ New ‘Improved’ Code – 6.5 mins.

✤ Sustained performance: 43 PFLOPS
✤ Peak performance: 73.5 PFLOPS

✤ Peak power: 9MW [for 4600 nodes]

19

Quantum Monte Carlo Solver (new code)

“Walker – Accumulator” mapping: 1:1

N1

N3

N4

Walker 1

Walker 3

Walker 2

Walker 4

N2 N2

N1

N3

N4

G2’’’

G2’’’’

Green’s
Function

[G]

[G]

[G]

[G]

[G]

GN2

GN1

GN3

GN4

Both Walkers and Accumulators run on the GPU

Accu. 1

Accu. 2

Accu. 3

Accu. 4

G2’

G2’’

Challenges:

✤Number of walkers bound by
the number of accumulators

✤Memory / accumulator: 3GB

✤Larger cluster size – needs
more walkers

o Private copy of ‘G4’ Matrix is
stored on each Accumulator

20

Ongoing efforts : SciDAC
• Single-band Hubbard model –> 2 / 3 – band Hubbard Model

• Memory challenges for accumulators

• Use of mixed precision (half-, single- and double precision) [Tensor cores]

• Collaboration with TAU:
o TAU/CUDA initialization and CPU/GPU timestamp sync. on Power9 + NVIDIA (Summit)
o Updated CUDA support – multi-GPU nodes
o TAU data organization – for GPU streams
o Continuous Integration – performance database (past / future developments)

• Autocorrelation time based on system size and number of measurements
o Time it takes for two measurements to be decorrelated and hence not biased configurations

21

Optimizing Dynamic Cluster Approximation
on the Summit supercomputer

Arghya “Ronnie” Chatterjee

Performance Engineer, Scientific Computing Group,
National Center for Computational Sciences (NCCS), ORNL

chatterjeea@ornl.gov

Aug 8th, 2019

