
Efficient Parallel I/O with HDF5 and
Proactive Data Containers (PDC)

Suren Byna
Staff Scientist

Scientific Data Management Group
Lawrence Berkeley National Laboratory

▪ ExaHDF5: Suren Byna, Quincey Koziol, Houjun Tang, Bin Dong, Junmin Gu,
Jialin Liu, Alex Sim, Tonglin Li, Teng Wang, Venkat Vishwanath, Rick Zamora,
Paul Coffman, Todd Munson, Scot Breitenfeld, John Mainzer, Frank Willmore,
Dana Robinson, Jerome Soumagne, Richard Warren, Neelam Bagha, Elena
Pourmal,

▪ EOD-HDF5: Quincey Koziol, Suren Byna, Houjun Tang, Tonglin Li, John
Mainzer, Scot Breitenfeld, Gerd Heber, Elena Pourmal, Wei Zhang, Yong Chen

▪ Proactive Data Containers: Suren Byna, Quincey Koziol, Houjun Tang, Teng
Wang, Bin Dong, Jialin Liu, Jerome Soumagne, Kimmy Mu, Richard Warren,
Venkat Vishwanath, François Tessier

2

Teams contributed to these slides

▪ Simulations

▪ Experiments

▪ Observations

3

Scientific Data - Where is it coming from?

4

Supercomputing systems

Trends – Storage system transformation

5

IO Gap

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

IO Gap

Shared burst buffer

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

Memory

Parallel file system
(on Theta)

Archival storage
(HPSS tape)

Node-local storage

Conventional Shared burst buffer
Eg. Cori @ NERSC

Node-local, Eg. Theta
(ALCF), Summit (OLCF)

Center-wide storage
(on Summit)

• IO performance gap in HPC storage is a significant bottleneck
because of slow disk-based storage

•SSD and new memory technologies are trying to fill the gap, but
increase the depth of storage hierarchy

Memory

Parallel file system

Archival storage
(HPSS tape)

Node-local storage

Upcoming

Campaign / center-
wide storage

NVM-based shared
storage

Applications

High Level I/O Library (HDF5, netCDF, ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS,..)

I/O Hardware

6

Parallel I/O software stack

§ I/O Libraries
– HDF5, ADIOS, PnetCDF, NetCDF-4, …

• Middleware – POSIX-IO, MPI-IO
• I/O Forwarding

• File systems: Lustre, GPFS /
Spectrum Scale, DataWarp, …

§ I/O Hardware (disk-based, SSD-
based, …)

▪ Storing and retrieving data – Parallel I/O and HDF5
– Brief intro to HDF5
– New features in HDF5 (funded by ECP and ASCR)

▪ Autonomous data management system
– Proactive Data Containers (PDC) system
– Metadata management service
– Data management service

7

Focus of this presentation

WHAT IS HDF5?

Applications
High Level I/O Library (HDF5, NetCDF,

ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS,..)

I/O Hardware

What is HDF5?

• HDF5 è Hierarchical Data Format, v5

• Open file format
– Designed for high volume and complex data

• Open source software
– Works with data in the format

• An extensible data model
– Structures for data organization and specification

HDF5 is like …

10	

100	

1000	

10000	

mp
ich
	

lib
sci
	

mk
l	

hd
f5-
pa
ral
lel
	

fft
w	

hd
f5	

pa
pi	

ne
tcd
f	

ne
tcd
f-h
df5
pa
ral
lel
	

im
pi	

pe
tsc
	

pa
ral
lel
-ne
tcd
f	

tps
l	 gsl

	

bo
os
t	

N
um

be
r	o

f	u
ni
qu

e	
us
er
s	

Libraries	

Library	Usage	on	Cori	and	Edison	in	2017	

100	

1000	

10000	

100000	

1000000	

10000000	

mp
ich
	

lib
sci
	

mk
l	

hd
f5-
pa
ral
lel
	

hd
f5	

fft
w	

ne
tcd
f-h
df5
pa
ral
lel
	

ne
tcd
f	

pa
ral
lel
-ne
tcd
f	

bo
os
t	

pa
pi	 zlib

	
im
pi	

pe
tsc
	

tps
l	

N
um

be
r	o

f	l
in
ki
ng
	in
ci
de

nc
es
	

Libraies	

Library	usage	on	Cori	and	Edison	in	2017	

HDF5 Overview

▪ HDF5 is designed to organize, store, discover, access,
analyze, share, and preserve diverse, complex data in
continuously evolving heterogeneous computing and
storage environments.

▪ First released in 1998, maintained by The HDF Group

▪ Heavily used on DOE supercomputing systems

“De-facto standard for scientific computing” and integrated into every major
scientific analytics + visualization tool

Top library used at NERSC by
the number of linked instances
and the number of unique users

HDF5 Ecosystem

Fi
le

 F
or

m
at

Li
br

ar
y

Da
ta

 M
od

el

Do
cu

m
en

ta
tio

n
…

Supporters

…

To
ol

s

HDF5 File

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6An HDF5 file is a

container that
holds data objects.

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

HDF5 Data Model

File

Dataset Link

Group

Attribute
Dataspace

DatatypeHDF5
Objects

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

HDF5 Home Page
HDF5 home page: http://www.hdfgroup.org/solutions/hdf5/
• Latest release: HDF5 1.10.5 (1.12 coming soon)
HDF5 source code:

• Written in C, and includes optional C++, Fortran, and Java APIs
– Along with “High Level” APIs

• Contains command-line utilities (h5dump, h5repack, h5diff, ..) and
compile scripts

HDF5 pre-built binaries:
• When possible, include C, C++, Fortran, Java and High Level libraries.

– Check ./lib/libhdf5.settings file.
• Built with and require the SZIP and ZLIB external libraries

https://www.hdfgroup.org/solutions/hdf5/

HDF5 Software Layers & Storage

HDF5 File
Format File Split

Files

File on
Parallel
Filesystem

Other

I/O Drivers

Virtual File
Layer Posix

I/O
Split
Files MPI I/O Custom

Internals Memory
Mgmt

Datatype
Conversion Filters Chunked

Storage
Version

Compatibility
and so on…

Language
Interfaces

C, Fortran, C++

HDF5 Data Model Objects
Groups, Datasets, Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 Li
br

ar
y

St
or

ag
e

netCDF-4High Level
APIs

HDFviewAp
ps h5dumpH5Part

API
… …VPIC…

HDF5 performance on supercomputers

▪ A plasma physics simulation’s I/O kernel, using VPIC code
– I/O kernel with MPI processes, where each process writes 8 variables of 8 M

particles

19

ExaHDF5 features – Virtual Object Layer (VOL)

▪ Provides an application with the HDF5
data model and API, but allows different
underlying storage mechanisms

▪ Enables developers to easily use HDF5
on novel current and future storage
systems
– Plugins for using fast storage layers transparently

and for accessing DAOS are available
– VOL plugins for reading netCDF and ADIOS data

are in development

▪ VOL connectors can be stacked and set
with a configuration variable

▪ Integrated into the HDF5
https://bitbucket.hdfgroup.org/projects/HD
FFV/repos/hdf5/
– Will be released in 1.12.x

HDF5 API

Virtual Object Layer (VOL)

Raw Native (H5) Metadata Remote

Virtual File Driver (VFD)

File System

POSIX mpiio sec split

VOL Plugins

Remote system(s)

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/

20

ExaHDF5 features – Data Elevator

▪ Data Elevator caching VOL
– Transparent data movement in storage hierarchy
– In situ data analysis capability using burst buffers

▪ Tested with a PIC code and Chombo-IO benchmark
▪ Applications evaluating Data Elevator

– E3SM-MMF and Sandia ATDM project is evaluating performance
– Other candidates: EQSim, AMReX co-design center

▪ Installed on NERSC’s Cori system (module load data-
elevator)

Memory

Parallel file system

Archival storage
(HPSS tape)

Shared burst buffer

Node-local storage

Campaign storage

0	
50	

100	
150	
200	
250	
300	

1024	 2048	 4096	 8192	 16384	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

0	

1	

2	

3	

4	

5	

1024	 2048	 4096	 8192	

Ti
m
e	
(s
ec
/G

B)
	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

0	 100	 200	 300	

Data	Elevator	
VPIC		+		Burst	

DataWarp		API		
VPIC		+	Burst	Buffer	

DataWarp	
VPIC	+	Burst	Buffer	

VPIC		+	Lustre	

Time	(s)	

Compu=ng	 Wri=ng	Data	 Moving	Data	from	BB		to	PFS	

https://bitbucket.org/sbyna/dataelevator/

21

ExaHDF5 features – Full SWMR

▪ SWMR enables a single writing process to update an HDF5 file, while
multiple reading processes access the file in a concurrent, lock-free
manner

▪ Previously limited to the narrow use-case of appending new elements
to HDF5 datasets

▪ Full SWMR extends existing SWMR to support all metadata
operations, such as object creation and deletion, attribute updates

In ECP, ExaFEL project requires
this feature. In general, Full SWMR
is useful for managing experimental
and observational data

Full SWMR branch of HDF5:
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf
5/browse?at=refs%2Fheads%2Ffull_swmr

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse?at=refs%2Fheads%2Ffull_swmr

▪ Asynchronous I/O allows an
application to overlap I/O with other
operations

▪ Implemented the asynchronous I/O
feature as a VOL (Virtual Object
Layer) connector for HDF5

▪ Asynchronous task execution, by
running those tasks in separate
background threads
– Using Argobots for task execution
– The thread execution interface has been

abstracted to allow to replace Argobots

22

ExaHDF5 features – Async I/O

Async I/O branch of HDF5:
https://bitbucket.org/berkeleylab/exahdf5/src/master/vol_
plugins/async/

https://bitbucket.org/berkeleylab/exahdf5/src/master/vol_plugins/async/

23

ExaHDF5 features – Parallel querying

▪ HDF5 index objects and API routines allow the creation of indexes on
the contents of HDF5 containers, to improve query performance

▪ HDF5 query objects and API routines enable the construction of query
requests for execution on HDF5 containers
– H5Qcreate
– H5Qcombine
– H5Qapply
– H5Qclose

0
10
20
30
40
50
60
70
80
90

1 2 4 8 16 32

Build Index (seconds)

of MPI procs

T
im

e
(s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32

Evaluate Query (seconds)

of MPI procs

T
im

e
(s

)

• HDF5 Bitbucket repo containing the “topic-parallel-indexing” source
code: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5

• Parallel scaling of index generation and query resolution is
observed even for small-scale experiments:

https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5

HDF5 performance tuning – Athena

▪ Athena astrophysics code experienced poor performance

Athena astrophysics code
40% of execution time in I/O, using HDF5
profiling tools identified a large number of
concurrent writes; with collective I/O,
reduced I/O portion to less than 1% of the
execution time.

Neurological Disorder I/O Pipeline
Identified that h5py interface was prefilling
HDF5 dataset buffers unnecessarily and
avoiding that improved performance by 20X
(from 40 min to 2 min)

HDF5 performance tuning – Accelerator physics

▪ Accelerator physics simulation code

WarpX-IO

Default

Lustre tuning

h5py bug fix
+

Lustre tuning

26

HDF5 performance tuning – AMReX I/O

AMReX I/O
Benchmark
initial tuning

Experimental and Observational Data (EOD)
management requirements

● Requirements of LCLS data
○ Handle multiple producers and multiple consumers of data
○ Support remote streaming synchronization
○ Support for variable length modes of data

● Requirements of NCEM data
○ Support for sparse data management
○ Support for remote streaming synchronization
○ Multiple producers and multiple consumers of data -- has interest

● Requirements of ALS data
○ Extend data models to support changes in data and data schemas
○ Metadata and provenance management for multiple HDF5

containers

● Remote streaming
synchronization
○ Use case: LCLS-2 at SLAC will

need to write HDF5 files locally and
simultaneously duplicate the files on
Cori at NERSC

○ Evaluated various design options
■ Virtual Object Layer (VOL), Virtual

File Driver (VOL), HDF server,
rsync file system, and snapshot +
transmit

○ Splitter and Mirror Virtual File Driver
(Mirror VFD) development in
progress

Remote streaming synchronization

● Multiple producers and multiple consumers
○ Use case: Multiple producers of LCLS-2 data at SLAC need

to write to the same HDF5 file, while the same file is being
analyzed by multiple readers

○ Full Single writer and multiple readers (SWMR)
implementation is in progress

○ Exploring consistency and coherence models of MWMR in
existing tools, such as TileDB

■ Works only on a single node

Multiple writers and multiple readers (MWMR)

● Evaluating performance of variable-length arrays and
sparse datasets in current HDF5 implementation

● Ongoing activity
○ Identify performance bottlenecks from an LCLS use case
○ Devise optimization strategies for writing and reading

variable length arrays
○ Implement in HDF5 and evaluate

Variable length arrays and sparse data management

Metadata indexing and querying for HDF5 files

● Developed indexing structures for
searching metadata

○ Existing metadata search rely
on relational databases
(PostgreSQL) and NoSQL
databases (MongoDB), etc.

○ Developed indexes that can
be built in for self-describing
formats, i.e., HDF5.

■ A hybrid index with
Adaptive radix tree (ART)
for strings and SBST for
numeric attribute values HPC System

 Application

MIQS

Shared File System

File
Metadata

……
Metadata

…

…

MIQS Index Files

Metadata Indexing and Querying Service

Metadata Search Service

Index Persistence

In-memory Index

Attribute
Name Index

String Value
Index

Numeric
Value Index

Index
Builder

File Path List Object Path List

 Application

MIQS

Metadata Indexing Index Persistence Index ReloadingMetadata Scanning Serving Query

ART
(Attribute Names)

SBST
(Numeric Attribute Values)

… ART
(String Attribute Values)

List<(File_Path_Identifier, Object_Path_Identifier)>

Object Path ListFile Path List

…

…

7

FPFP

60 3

FP FP

1 5

FP FP

4

FP

2

FP

…

…

7

OPOP

60 3

OP OP

1 5

OP OP

4

OP

2

OP

FP = File Path OP = Object Path

32

Autonomous data management using object
storage – Proactive Data Containers (PDC)

Storage Systems and I/O: Current status

33

Hardware Software

High-level lib
(HDF5, etc.)

IO middleware
(POSIX, MPI-IO)

IO forwarding

Parallel file
systems

Applications

Usage

… Data (in memory)

IO software

… Files in file system

• Challenges
– Multi-level hierarchy complicates data movement, especially if user has

to be involved
– POSIX-IO semantics hinder scalability and performance of file systems

and IO software

Tune middleware
Tune file systems

Memory

Parallel file system

Archival storage
(HPSS tape)

Shared burst buffer

Node-local storage

Campaign storage

HPC data management requirements

Use case Domain Sim/EOD/ana
lysis

Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable
I/O interfaces, correlation
among simulation and
experimental data

CMB /
Planck

Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam &
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces, efficient
and automatic data movement

34

Easy interfaces and superior performance

Autonomous data management

Information capture and management

34

Next Gen Storage – Proactive Data Containers (PDC)

Memory

Disk-based storage

Archival storage (HPSS
tape)

Shared burst buffer

Hardware

Node-local storage

Campaign storage

Software
High-level API Applications

Usage

… Data (in memory)

35

▪ Object-centric data access interface
§ Simple put, get interface
§ Array-based variable access

▪ Transparent data management
§ Data placement in storage hierarchy
§ Automatic data movement

▪ Information capture and
management
§ Rich metadata
§ Connection of results and raw data with

relationships

Persistent Storage API

BB FS Lustre DAOS

…

PDC System – High-level Architecture

36

cpd
010

100
11

010
010

10010
100

01

010
101

1001001000

01001011

▪ Object-level interface
– Create – containers and objects
– Add attributes
– Put object
– Get object
– Delete object

▪ Array-specific interface
– Create regions
– Map regions in PDC objects
– Lock
– Release

37

Object-centric PDC Interface

J. Mu, J. Soumagne, et al., “A Transparent Server-managed Object Storage
System for HPC”, IEEE Cluster 2018

Proactive Data Container

Container

Dataset

KV-Store

Group
<root>

A B C

D E F

Object-centric PDC Interface

J. Mu, J. Soumagne, et al., “A Transparent Server-managed
Object Storage System for HPC”, IEEE Cluster 2018

Release

Runtime
System

▪ Object-level interface
– Create – containers and objects
– Add attributes
– Put object
– Get object
– Delete object

▪ Array-specific interface
– Create regions
– Map regions in PDC objects
– Lock
– Release

▪ Usage of compute resources for I/O
– Shared mode – Compute nodes are shared

between applications and I/O services
– Dedicated mode – I/O services on separate

nodes

▪ Transparent data movement by PDC
servers

– Apps map data buffers to objects and PDC
servers place and manage data

– Apps query for data objects using attributes

▪ Superior I/O performance

39

Transparent data movement in storage hierarchy

H. Tang, S. Byna, et al., “Toward Scalable and Asynchronous Object-centric Data Management for HPC”,
IEEE/ACM CCGrid 2018

0

350

700

1050

124 248 496 992 1984 3968 7936 15872

Ti
m
e	
in
	se

co
nd

s

Number	of	processes

HDF5	read		(Lustre) PLFS	read		(Lustre)
PDC	read		(Lustre) HDF5	read		(BB)
PDC	read		(BB)

0

250

500

750

124 248 496 992 1984 3968 7936 15872

Ti
m
e	
in
	se

co
nd

s

Number	of	processes

HDF5	write		(Lustre) PLFS	write		(Lustre)
PDC	write		(Lustre) HDF5	write		(BB)
PDC	write		(BB)

▪ Flat name space
▪ Rich metadata

– Pre-defined tags that includes
provenance

– User-defined tags for capturing
relationships between data objects

▪ Distributed in memory metadata
management

– Distributed hash table and bloom
filters used for faster access

40

Metadata management

H. Tang, S. Byna, et al., “SoMeta: Scalable Object-centric Metadata Management for High Performance
Computing”, to be presented at IEEE Cluster 2017

HDF5 and PDC bridge

• Developed a HDF5 Virtual
Object Layer (VOL) to make
PDC available to all HDF5
applications

• Minimal code change for
HDF5 applications and
working towards no code
change requirement
• 2X to 7X speed up with dedicated

mode of PDC

41

0

30

60

90

120

992 (32) 1984 (64) 3968 (128) 7936 (256) 15872 (512)

Ti
m

e
in

 S
ec

on
ds

Number of Client Processes (Nodes)

Native HDF5 (COLLECTIVE) Native HDF5 (INDEPENDENT)
HDF5 PDC VOL shared server HDF5 PDC VOL separate server TCP
HDF5 PDC VOL separate server GNI

VPIC-IO write performance

0

20

40

60

992 (32) 1984 (64) 3968 (128) 7936 (256) 15872 (512)

Ti
m

e
in

 S
ec

on
ds

Number of Client Processes (Nodes)

Native HDF5 (COLLECTIVE) Native HDF5 (INDEPENDENT)
HDF5 PDC VOL shared server HDF5 PDC VOL separate server TCP
HDF5 PDC VOL separate server GNI

BD-CATS I/O performance

Collaborators: THG

▪ HDF5 file format is highly used and the ECP ExaHDF5
project is optimizing the library and tools

▪ Features
– Virtual Object Layer (VOL)
– Data Elevator and async I/O VOL connectors
– Full SWMR and parallel querying
– In progress: subfiling, topology-aware I/O, etc.
– EOD management – remote sync, MWMR, metadata querying, etc.

▪ Towards automated object-centric data management,
developing Proactive Data Containers (PDC) runtime system
– Scalable namespace management, automated and async data
movement, rich in-memory metadata management services

– Bridge between HDF5 and PDC via a VOL connector

42

Conclusions

▪ Contact:
• Suren Byna (sdm.lbl.gov/~sbyna/)

[SByna@lbl.gov]

▪ Contributions to this presentation
• ExaHDF5 project team

(sdm.lbl.gov/exahdf5)
• Proactive Data Containers (PDC) team

(sdm.lbl.gov/pdc)
• SDM group: sdm.lbl.gov

43

Thank you!

