
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Revisiting Databases for
Scale Up Data Management
Jay Lofstead, Margaret Lawson, Ashleigh
Ryan, John Mitchell

SAND2017-12103 C, SAND2018-12554 C, SAND2018-13008 C, SAND2019-2166 PE

April 23, 2019

Motivation 1

§ SIRIUS project
§ US DOE Exascale Computing Project Annual

Q: How do we make it easier for scientists to select a data set for
deep analysis once it is written?

A: Add user-defined tags and advanced searching capability
based on the tags and the data itself.

Margaret Lawson (then Dartmouth undergrad, now UIUC PhD
student) took on this challenge

Problems Faced

§ Simulations with 100s TB per output, run every few minutes
§ Ex. XGC1, Square Kilometer Array Radio Telescope (SKA)

§ Storage devices too slow to sift through all output to find
“interesting data”

§ Scientists have specific data they want to retrieve
§ Ex. “blob” in fusion reactor or a phenomenon in astronomy

3

EMPRESS’ Solution

§ Allow users to label data and retrieve data based on labels

§ Features:
§ Robust, standard per-process metadata
§ User-created metadata that is fully customizable at runtime
§ Programmatic query API to retrieve data contents based on metadata

4

Previous Solutions

§ HDF5 and NetCDF – rudimentary attribute capabilities, basic
metadata

§ ADIOS – per-process metadata

None of these address efficient attribute searching

§ FastBit – offers data querying based on values, but very
limited support for spatial queries and attributes

5

Why not use a Key-Value Store?

§ Custom keys can go a long way, but not far enough
§ Two Problems:

§ Inexact matches
§ Custom Metadata

§ Relational databases with indices are radically faster at
searching like this

6

SIRIUS Architecture

7

Applications

D
escription of D

ata

Storage and I/O
System Services

Cross Layer Services

I/O API

Refactoring
Other

PluginsReduction

Storage Resources (Ceph managed)

NVRAM PFS Campaign
Storage

Long term
storage

M
ig

ra
tio

n

Pu
rg

in
g

EM
PR

ES
S

Q
oS

R
es

ou
rc

e
M

an
ag

em
en

t

Data
Placement &
Movement

SI
RI

US
 A

rc
hi

te
ct

ur
e

SIRIUS Workflow – Write Process

8

Generate
Tags

Simulation

Ceph

Metadata
+ tags

Data

Lightweight
Analysis

EMPRESS

SIRIUS Workflow – Read Process

9

EMPRESS

1.Query

ADIOS

2.Programmatic
Query API

User

6. Data

5. Data

4. Object Names

3. Matching
Object Names

Ceph

High Level Design

10

EMPRESS Servers

Programmatic
Query API

SimulationSimulation Node

Simulation

ADIOS
EMPRESS

API
Ceph
API

Faodail

11

RDMA Portability Layer

Kelpie

Distributed, In-memory
Key/Blob Service

Data Warehouse

NNTI	3.0 libfabric

Communication Services

Lunasa

Network
Memory

Management

I/O Modules
(IOMs)

Data Interface
Modules (DIMs)

Storage - Tracked Metadata

§ Dataset information
§ Application, run, and timestep information

§ Variable information
§ Catalogs types of data stored for an output operation

§ Variable chunk information
§ Subdivision of simulation space associated with a particular variable

§ Custom metadata class
§ Metadata category the user adds for a particular dataset
§ Ex. Max

§ Custom metadata instance
§ Ex. Flag for chunk or a bounding box spanning chunks

12

Metadata Model

§ as

13

Atomic Operations

§ Control data visibility until it is complete and correct
§ Enable better workflow integration

§ Low overhead transactions
§ Still atomic, but less rigidly implemented
§ Using D2T system of Doubly Distributed Transactions

14

Portability

§ Need metadata to be independent of the storage layer so it
can travel with data should it move to a different storage
system

§ Storing names can be problematic
§ Using name generator idea explored with UCSC

15

Testing Goals 1

§ Scalable?
§ Number of client processes: 1024-2048

§ Effect of client to server ratio
§ Ratios tested: 32:1 – 128:1

§ Overhead of including a large number of custom metadata
items
§ Number of custom metadata classes: 0 or 10
§ On average 2.641 custom metadata instances per chunk

16

Testing Goals 1 (Continued)

§ Proof of concept, can EMPRESS efficiently support:
§ Common writing operations

§ 2 datasets written, each with 10 globally distributed 3-D arrays
§ Common reading operations

§ 6 different read patterns that scientists frequently use (Lofstead, et al.
“Six Degrees of Scientific Data”)

§ A broad range of custom metadata
§ 10 custom metadata classes including max, flag, bounding box (two 3-D

points)

§ Scientific validity
§ A minimum of 5 runs per configuration on 3 computing clusters:

§ Serrano (total nodes: 1122)
§ Skybridge (total nodes: 1848)
§ Chama (total nodes: 1232)

17

Testing – Query Times

18

§ EMPRESS efficiently supports a wide variety of operations
including custom metadata operations

Testing – Chunk Retrieval Time

19

§ Most time is spent waiting for the server to respond
§ Room for improvement in the Faodail infrastructure

Testing – Writing and Reading Time

20

§ Good scalability for fixed client-server ratio
§ No significant overhead for adding custom metadata
§ Client-server ratio greatly affects performance

Evaluation 2 Compare with HDF5

21

Evaluation: Write Process

§ Run structure:
§ One application run, three timesteps, ten 3-D variables

§ Data
§ Each process writes 0.4GB of data (10% of RAM) per timestep

§ Custom metadata:
§ 10 different tags of varying frequency
§ On average, each process writes 26 attributes per timestep (2.6 per

variable)

22

Evaluation: Read Process

§ 6 common read patterns are performed including
§ An entire variable
§ A plane and partial plane in each dimension
§ A 3-D subspace

§ Custom metadata is used to identify potential features of
interest and the associated data is read in

(using Lofstead, et al., “Six Degrees of Scientific Data” patterns)

23

Evaluation: Writing

§ Both can do efficient metadata writes at the evaluated scales
§ But EMPRESS can scale out to achieve constant performance

24

Evaluation: Read

§ HDF5 takes almost as long to do the metadata query as it
does to read the data

25

Evaluation: Accelerating Data Reads

§ EMPRESS can significantly accelerate data reads by limiting
the scope to data of interest

26

Relational is Nice, But Limited

§ Columnar databases allow adding arbitrary additional
columns with typed data you can query against (I think). Will
this work with performance?

27

How did I get here?

§ Fall 2018 intern Ashleigh Ryan (GT) comes to the rescue
§ Agreed to explore this seemingly simple question
§ Did a tremendous job exploring the deadly terrain that is NoSQL

databases-–particularly with the intersection of an HPC cluster on a
restricted network.

§ Primary database choice: Cassandra
§ Secondary: Hbase

§ Other NoSQL databases are either key-value, document
stores, or otherwise can’t work
§ Software requirements that can’t be met solely as an end user, it must

be run as an OS service, or other non-starter requirements.
28

What else is comparable?

§ SoMeta

§ MDHIM

§ HDF5, ADIOS, PnetCDF, NetCDF

None of these address the desired flexibility and performance
for managing metadata, and in particular, data tagging and
searching.

29

What NoSQL databases

§ We (Ashleigh) investigated several options

30

Database FOS Columnar/
KeyValue

Fault Tolerance General Language

Apache
Accumulo

✔ Columnar Write Ahead + HDFS Java

Cassandra ✔ Columnar Replication Cassandra Query
Language

Druid ✔ Columnar Replication + HDFS JSON over HTTP
Dynamo ✖ KV S3 AWS API
Hbase ✔ Columnar HDFS Java API
Vertica ✖ Columnar Varies SQL

Let’s Battle it Out

§ Four rounds of problems that have to be solved
§ What has the right features to be worth testing
§ What is it going to take to get it working at all
§ Can we make our queries work with any performance
§ Battle scars and lessons for our next battle against scale out

computing tools

31

Round 1. Fight!

§ NoSQL assumption: running on a cluster with full Internet
access from every node with no code deployment restrictions
and full control over the storage infrastructure.
§ We fail this test miserably.

§ HDFS requirement is a hard “no”
§ We have our storage infrastructure defined already with burst buffer

and parallel storage deployed

§ Full Internet access from the compute nodes is a hard “no”
§ Getting TCP/IP to work properly is hard enough

§ Not getting full source code is a soft “no”
§ We’ll pay for support, but we need source to get it to work on our

messy hardware and software.
32

Round 1. Result

§ Two potentially viable choices
§ Cassandra – no HDFS and a C-based query API available
§ Hbase – Java-based API and HDFS, but might work

§ Chose Cassandra for the potential and active user community
for support

33

Round 2. Fight!

§ Now to get Cassandra to work, just on a desktop on the
restricted network

§ Problem 1: What do you mean I need to install a bunch of
packages from the Internet?

§ Problem 2: What do you mean I have to run it either as a
service or as a separate process I interact with?

§ Problem 3: What do you mean I have replication? Can’t I just
do a single storage node?

34

Round 2. Problem 1 Result

§ Dependencies are a nightmare
§ This is not unique to Cassandra

§ Let’s spend a couple of weeks just generating a list of the
dependencies and figuring out how to build them from
source, in order, so I can build Cassandra.

§ Ultimately it worked out, but it is a pain.

Other systems, like Ceph, can be dramatically worse for their list
of dependencies. Open source packages are nice, but dozens to
hundreds of dependencies is a recipe for disaster.

35

Round 2. Problem 2 Result

§ Cassandra wants to be your storage interface and therefore
look like a storage service

§ How do you put a TCP/IP-based service on an IB network
when TCP/IP isn’t the native protocol?
§ Yes, it can work, but configuration isn’t straightforward

§ You can run it in a window and access that service from
another, but it isn’t a general solution.

§ That C-based API from DataStax works great!

36

Round 2. Problem 3 Result

§ Cassandra REALLY wants to use replication—even if you don’t

§ Running on a single node was easy enough

§ Deploying to the cluster and suddenly it wouldn’t run
anymore
§ Even though the configuration set the replica count to ‘1’

Result: Even though the configuration said 1 replica, it had to be
explicitly set in code to ‘1’ again to make it work properly. The
error messages were baffling making debugging a series of trial
and error.

37

Round 3. Fight!

§ Now that we have something working-ish, how about those
fancy queries we want to do?

§ Problem 1: Ok, adding a column is straightforward. What do
you mean querying has limited functionality against that new
column?

§ Problem 2: Wow, that is super limited, is there a way to avoid
doing table scans regularly?

38

Round 3. Problem 1 Result

§ Cassandra’s core setup allows only special columns to have an
index on them. These are the only ones on which a query can
execute efficiently.

§ Result: This is completely against what we were trying to do.
Is anything else (Hbase?) better?
§ Nope. NoSQL is REALLY limited to get the performance
§ Lots of Internet people say when asked about this, “why would you do

that? That isn’t how this is supposed to work.”
§ Just do table scans for nearly all queries we want to perform.

This is a near fatal blow to the idea. Fortunately, there are still
options.

39

Round 3. Problem 2 Result

§ Table scans. Really? What can be done?

§ Enter: Map-Reduce
§ It is possible to embed Spark into Cassandra

§ Wait, that is another set of software dependencies and assorted
ugliness.

§ But it can work!
§ Should we switch to Hbase instead because of the built-in Hadoop?

Spark can cache Map-Reduce queries to mimic what we want,
but then it is memory bound—and won’t tell you when it throws
away cached results. It just runs slower when it is out of
memory. 40

Round 4. Fight!

§ Battle scars and lessons learned

§ Problem 1: Can this work at all with performance

§ Problem 2: Can this software stack co-exist on scale up
platforms

§ Problem 3: Is there a way to get what we want?

41

Round 4. Problem 1 Result

§ Is there a performant option?

§ Bottom line: NO

§ Issue: NoSQL is set to query against a limited set of pre-
known parameters with the additional columns coming along
for the ride.
§ Corollary: Doing a query for the presence or absence of a value for a

column is impossible (except for using Map-Reduce).

Rigid relational models are just a better fit for performance, but
it is hard to be the right kind of flexible.

42

Round 4. Problem 2 Result

§ What about installing this software?

§ Bottom Line: Maybe to yes.

§ Issue: Lots of dependencies including a heavy assumption of
TCP/IP generates terrible network performance and a big
software footprint. Getting machine admins to agree to install
the behemoth will be difficult.

§ This is solvable, but will take a lot of effort. The constant
talking to the Internet requires pre-caching things or
intercepting version checking. Not impossible, but annoying.

43

Round 4. Problem 3 Result

§ Can we make this work?

§ Bottom Line: Not using any existing software.

§ Issue: relational databases are rigid for performance
scalability with arbitrary queries against a fixed schema.

§ Issue: NoSQL databases are rigid for performance against a
small set of know values to then check if some other
attributes have been added. Looking based on attribute isn’t
a supported model.

44

Decision

§ NoSQL has interesting ideas, but we can’t use the tools as is
on restricted clusters
§ There are caveats that make it possible, but an end-user will find it

difficult to impossible making a general library infeasible.

§ We have to start over if we want this to work. There is no
payoff for industry (or it would be done already) and it is a
high-risk prospect for research (cheaper, easier, and more
sure to face the relational complexity).
§ HDF5 is the de-facto standard with NetCDF and ADIOS filling in the

gaps. Replacing any of these will require solid buy-in from a
community (Klasky, as a physicist promoting the tool, was the key for
ADIOS to make that jump).

§ But that doesn’t mean I won’t try J
§ I have a summer 2019 student to tilt at this windmill.

45

Motivation 2

§ SPPARKS Kinetic Monte Carlo simulation engine welding
example

§ Problem: vast majority of simulation domain static between
output steps. What is a more efficient approach to data
management than text files or traditional IO libraries?

§ Solution: Stitch

46

Approach

§ Lazy
§ Only track what has been seen so far (i.e., we don’t care about the size

of the simulation domain)

§ Minimal
§ Only write was has changed since last output

§ Eventually Consistent
§ Rely on the output to eventually “make sense”

§ Reading specifies an arbitrary region and a time; Stitch
assembles (‘stitches’) the region state together from various
pieces using the newest for every point

47

Illustrative Example (SPPARKS)

48

Grain growth across a large domain is simulated using a series of
smaller overlapping sub-volumes.

Post-process, visualize and analyze on arbitrary sub-volumes
and arbitrary times

Sub-volumes Overlap Domain grows as
new material is added

2-D Full Domain Example

49

Strong Scaling Study

§ Database approach scales well compared to others

50

File Size Comparisons

51

E. Chen, J. Lofstead, and J.A. Mitchell 11

A weak scaling study was also conducted; in this case, the number of sites per
process were kept around 5⇥ 105 sites/process. This led to the domain dimensions
shown in Table 3.1. Figure 3.2b shows results for the same I/O formats. Again, stitch
I/O remains competitive with other formats up to 512 processors, and still runs 2 to
10 times faster than spparks I/O with a single text file. Once again, the stitch file is
3 to 4 times smaller than the text file on average, with the ratio increasing for more
processors. All of the curves deviate from ideal behavior, which suggests that the
increased parallel overhead is not exclusively a stitch issue. This result shows that it
is feasible to use stitch as an I/O tool on large parallel computing clusters, though we
emphasize far fewer than 512 processors are required if stitching.

Num procs Domain size Num sites Stitch file size Text file size

4 150 ⇥ 150 ⇥ 88 1980000 23 MB 59 MB
8 216 ⇥ 216 ⇥ 88 4105728 47 MB 137 MB

16 300 ⇥ 300 ⇥ 88 7920000 91 MB 277 MB
32 426 ⇥ 426 ⇥ 88 15969888 186 MB 608 MB
64 600 ⇥ 600 ⇥ 88 31680000 363 MB 1.26 GB
128 860 ⇥ 860 ⇥ 88 65084800 753 MB 2.67 GB
256 1200 ⇥ 1200 ⇥ 88 126720000 1.42 GB 5.53 GB
512 1700 ⇥ 1700 ⇥ 88 254320000 2.91 GB 12.1 GB

Table 3.1: Parameters used in weak scaling performance study. The number of sites
per process was kept constant at approximately 5⇥ 105 sites/process. The stitch file
size was 3 to 4 times smaller than the size of the corresponding text file.

3.3. Stitching Performance. Stitching enables the ability to run large AM
simulations on very few processors. This is in contrast to the traditional approach
of running on the final domain that may be very large; significant computational
resources go to waste because the AM process is inactive on most of the domain at
any particular time. Stitching circumvents this problem by using fewer processors and
only performing computations on parts of the domain that are active; this enables AM
simulations to run a desktop machine (e.g. 16 procs) rather than on a supercomputer.

Performance enhancement from stitching was compared to traditional spparks AM
simulations. The parameters chosen for welding simulations were ↵ = 0.75, � = 0.5,
kBT = 0.25, haz width = 30 sites, melt pool speed vp = 10 sites/MCS and melt pool
width of 301.3 sites. These values were adapted from previous work by Rodgers et
al. [17], and we point the reader there for a deeper analysis on the e↵ect of di↵erent
parameters on the weld microstructure.

For performance measurements, the domain size was progressively doubled as
shown in Table 3.2. When running spparks without stitching, a weak scaling type ap-
proach was used: The number of processors was doubled while attempting to keep the
number of sites per process at approximately 7031 sites/process; without stitching, the
required number of processors and file sizes increase rapidly (see Fig. 3.3b). Thus, the
domain sizes we chose were limited by the traditional approach and its computability
on a reasonable number of processors. Notably, however, when simulating the same
domains with stitching, the number of processors was kept constant at 16 (approx.
6230 sites/process) on the individual cv, which is even accessible by desktop machines.
Output was written every 2MCS to a stitch file and distributed text files for stitching

Runtime with Stitching

§ With the process count reduction, things look really good

52

103

104

Av
er

ag
e

ru
nt

im
e

(s
ec

on
ds

)

w/ stitching 16 procs
w/o stitching

Domain size (X by Y by 1)

X= 750
Y= 300

32
64 128

256

512

1024

= num procs
 w/o stitching

1500
300

3000
300

3000
600

3000
1200

3000
2400

102

103

104

105

Fi
le

 s
iz

e
(M

B)

32

64

128

256

512

1024

16
16

16
16

16
16

Domain size (X by Y by 1)

w/ stitching
w/o stitching

num procs =

X= 750
Y= 300

1500
300

3000
300

3000
600

3000
1200

3000
2400

Benefits and Challenges

§ Move from 1024 process to 16
§ Move data size to 1/64th size per output
§ Wall clock time the same or slightly smaller (less output time)

§ SQLite has issues that prevent full scalability
§ BerkeleyDB may help, but probably not enough

§ LOTS more features we can talk about offline
§ Open Source (LGPL) release approved (look at my github [Jay

Lofstead (gflofst)] once paper accepted somewhere)
§ Full paper coming H1 2019 (on track for Cluster)

53

Questions?

gflofst@sandia.gov

54

