

Introduction to NVIDIA Profilers on Summit

Tom Papatheodore Oak Ridge Leadership Computing Facility (OLCF)

Jeff Larkin NVIDIA

Oak Ridge National Laboratory - April 11, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- System Access & Local NVIDIA Toolkit Install
- Cloning Repository & Setting Up Environment
- A Simple Example: Vector Addition
- Jacobi Iteration
 - Serial
 - Single GPU
 - Single GPU (explicit data movement)
 - Multiple GPU (OpenMP + OpenACC)
- Redundant Matrix Multiply
 - Dealing with multiple MPI ranks
 - Basic annotation of CPU/GPU activities with NVTX
 - Unified Memory
 - Remote kernel Analysis

2

System Access & Local NVIDIA Toolkit Install

If you want to follow along with the handson portions of this tutorial, you will need

- to have access to a Summit-like system
- to have a local install of NVIDIA Toolkit (v10+)

Access to the Ascent Training System

If you do not already have access to Summit, you can use the Ascent training system for this tutorial. Please visit the following url for instructions on how to do so:

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#obtaining-access-to-ascent

For the Project ID field, please use GEN121

In-Person Attendees Only!

Once you have access, you can login as follows:

\$ ssh USERNAME@login1.ascent.olcf.ornl.gov (This will drop you into /ccsopen/home/USERNAME)

Local Installation of NVIDIA Toolkit (version 10+)

To ensure compatibility, please install NVIDIA Toolkit version 10+. Please visit the following url to download the toolkit:

https://developer.nvidia.com/cuda-downloads

Make sure to download the appropriate version for your local operating system.

NOTE: You do not need an NVIDIA GPU on your local machine to install the toolkit and use the profiler.

CAK RIDGE

6

Summit Node

(2) IBM Power9 + (6) NVIDIA Volta V100

7

NVLink2 (50 GB/s)

1 (900 GB/s)

Cloning Repository & Setting Up Environment

Log Into Ascent and Change Directory

From the command line:

\$ ssh USERNAME@login1.ascent.olcf.ornl.gov

(This will drop you into the directory /ccsopen/home/USERNAME)

Change to the following directory:

\$ cd /gpfs/wolf/gen121/scratch/USERNAME

On Summit, you should navigate to the corresponding Alpine/GPFS directory for your project (since you need read/write access from the compute nodes).

E.g. /gpfs/alpine/PROJID/scratch/USERNAME

Clone Repository and Set up Programming Environment

Once in the appropriate directory from step 2, clone the git repository:
 \$ git clone https://github.com/olcf/nvidia profilers.git

$\mathbf{\mathbf{9}}$ cd into directory:

\$ cd nvidia_profilers

5

Run script to set up environment for the tutorial:

\$ source environment_ascent.sh On Summit, source the environment_summit.sh file instead.

At this point, you prompt should look like this:

[USERNAME@login1: /gpfs/wolf/gen121/scratch/USERNAME/nvidia_profilers]\$

A Simple Example: Vector Addition


```
#include <stdio.h>
#define N 1048576
global void add vectors(int *a, int *b, int *c){
   int id = blockDim.x * blockIdx.x + threadIdx.x;
   if(id < N) c[id] = a[id] + b[id];
}
int main() {
    size t bytes = N*sizeof(int);
   int *A = (int*)malloc(bytes);
   int *B = (int*)malloc(bytes);
   int *C = (int*)malloc(bytes);
   int *d A, *d B, *d C;
    cudaMalloc(&d A, bytes);
   cudaMalloc(&d B, bytes);
    cudaMalloc(&d C, bytes);
    for(int i=0; i<N; i++) {</pre>
       A[i] = 1;
       B[i] = 2;
    }
    cudaMemcpy(d A, A, bytes, cudaMemcpyHostToDevice);
    cudaMemcpy(d B, B, bytes, cudaMemcpyHostToDevice);
    int thr per blk = 256;
    int blk in grid = ceil( float(N) / thr per blk );
    add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_B, d_C);
    cudaMemcpy(C, d_C, bytes, cudaMemcpyDeviceToHost);
    free(A);
    free(B);
    free(C);
    cudaFree(d A);
   cudaFree(d B);
    cudaFree(d C);
```

CUDA Vector Addition

return 0;

}

#include <stdio.h>
#define N 1048576

<pre>globalvoid add_vectors(int *a, int *b, int *c){ int id = blockDim.x * blockIdx.x + threadIdx.x; if(id < N) c[id] = a[id] + b[id]; }</pre>	Vector addition kernel (GPU)
<pre>int main() { size_t bytes = N*sizeof(int);</pre>	
<pre>int *A = (int*)malloc(bytes); int *B = (int*)malloc(bytes); int *C = (int*)malloc(bytes);</pre>	Allocate memory on CPU
<pre>int *d_A, *d_B, *d_C; cudaMalloc(&d_A, bytes); cudaMalloc(&d_B, bytes); cudaMalloc(&d_C, bytes);</pre>	Allocate memory on GPU
<pre>for(int i=0; i<n; a[i]="1;" b[i]="2;" i++){="" pre="" }<=""></n;></pre>	Initialize arrays on CPU
<pre>cudaMemcpy(d_A, A, bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_B, B, bytes, cudaMemcpyHostToDevice);</pre>	Copy data from CPU to GPU
<pre>int thr_per_blk = 256; int blk_in_grid = ceil(float(N) / thr_per_blk); add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_B, d_C);</pre>	Set configuration parameters and launch kernel
<pre>cudaMemcpy(C, d_C, bytes, cudaMemcpyDeviceToHost);</pre>	Copy data from GPU to CPU
<pre>free(A); free(B); free(C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);</pre>	Free memory on CPU and GPU

CUDA Vector Addition

return 0;

}

Vector Addition Example

- \$ cd vector_addition/cuda
- \$ make

Vector Addition Example (nvprof results – text only)

From vec_add_cuda.JOBID:

==174655== Profiling result:

Туре	Time(%)	Time	Calls	Avg	Min	Max	Name
GPU activities:	56.25%	463.36us	2	231.68us	229.66us	233.70us	[CUDA memcpy HtoD]
	41.59%	342.56us	1	342.56us	342.56us	342.56us	[CUDA memcpy DtoH]
	2.16%	17.824us	1	17.824us	17.824us	17.824us	<pre>add_vectors(int*, int*, int*)</pre>
API calls:	99.35%	719.78ms	3	239.93ms	1.1351ms	717.50ms	cudaMalloc
	0.23%	1.6399ms	96	17.082us	224ns	670.19us	cuDeviceGetAttribute
	0.17%	1.2559ms	3	418.64us	399.77us	454.40us	cudaFree
	0.16%	1.1646ms	3	388.18us	303.13us	550.07us	cudaMemcpy
	0.06%	412.85us	1	412.85us	412.85us	412.85us	cuDeviceTotalMem
	0.03%	182.11us	1	182.11us	182.11us	182.11us	cuDeviceGetName
	0.00%	32.391us	1	32.391us	32.391us	32.391us	cudaLaunchKernel
	0.00%	3.8960us	1	3.8960us	3.8960us	3.8960us	cuDeviceGetPCIBusId
	0.00%	2.2920us	3	764ns	492ns	1.1040us	cuDeviceGetCount
	0.00%	1.4090us	2	704ns	423ns	986ns	cuDeviceGet

Now, transfer the .nvvp file from Ascent to your local machine to view in NVIDIA Visual Profiler.

From your local system:

\$ scp USERNAME@login1.ascent.ccs.ornl.gov:/path/to/file/remote /path/to/desired/location/local

16

1 File->Import

K NVIDIA Visual Profiler	File	View	Window	Help
• • •	*	New Se	ssion 8	θN
* 🔒 🗟	Op	en	9	fo B
	Clo	ne Sess	sion ជំន	βС
		Save	9	#S
		Save As		
	Q	Save Al	습 ()	#S
	2	Import	. 8	HE I

Select
Import profile data generated by nvprof.
Select an import source:
Command-line Profiler
Nvprof

Select "Single Process" then "Next >"

Import Nvprof Data

Select "Nvprof" then "Next >"

Import Profile Data for Single Process

Select one nvprof profile file containing timeline data and zero or more addition nvprof profile files containing event and metric values.

	Profile Files	Timeline Options	
Connection:	Local	\$	Manage connections
Timeline data file:	Enter nvprof profile file o	ontaining timeline data	Browse

17

CAK RIDGE National Laboratory

Click "Browse" next to "Timeline data file" to locate the .nvvp file on your local system, then click "Finish"

To zoom in on a specific region, hold Ctrl + left-click and drag mouse (Cmd for Mac)

2.16% 17.824us

					NVIDIA Visual P	rofiler						
) 🖫 🖳 🖳 🖏 🗣 🔍 -	₹ E F K K 5 8 8 & .											
*vec_add_cuda.h49n16.120	095.nvvp ⊠											
	.9 ms 805 ms	805.1 ms	805.2 ms	805.3 ms	805.4 ms	805.5 ms	805.6 ms 80	5.7 ms	805.8 ms	805.9 ms	806 ms	806.1 ms
Process "run" (174655)												
Thread 288656												
Runtime API	cudaM	emcpy		cuda	aMemcpy				cudaMen	псру		
Driver API												
Profiling Overhead												
[0] Tesla V100-SXM2-16GB												
Context 1 (CUDA)												
MemCpy (HtoD)		Memcpy HtoD [sync			Memcpy HtoD [syncj		Marram Di	all formal			
Compute								Memcpy Dt	OH [SYNC]			
cudaMemcpy cudaMemcpy // Set ext // tl // bi int thr_po int blk_in // Launch add_vectos // Copy da cudaMemcpy	<pre>v(d_A, A, bytes, cudak v(d_B, B, bytes, cudak ecution configuration nr_per_blk: number of lk_in_grid: number of er_blk = 256; n_grid = ceil(float() kernel rs<<< blk_in_grid, the ata_from device array v(C, d_C, bytes, cudak</pre>	<pre>lemcpyHostTo lemcpyHostTo parameters CUDA thread blocks in a t) / thr_per c_per_blk >> d_C to host lemcpyDevice</pre>	Device); Device); s per grid rid _bIk); >(d_A, d_B, array C ToHost);	block d_C);								
	Tvpe	Time(%)	Time	e Call	.s A	va Mi	n Max	Name				
	GPIL activities.	56 25%	463 36110	9	2 231 68	us 229 6611	s 233 7011e		memony	HtoD1		
		11 599	3/2 5611		1 3/2 56	13 225.000	a 3/2 5611a	ע עניס ן	memcny	D+0H]		
		ヨエ・リンつ	J74.J0U3	3	_ JHZ.JU	UD JHZ.JUU	S JHZ.JUUS	ICUDA				

1 17.824us 17.824us 17.824us add_vectors(int*, int*, int*)

CAK RIDGE

20

21

Jacobi Iteration

Jacobi Iteration – Problem Description

Use Jacobi Iteration to solve 2D Poisson equation with periodic boundary conditions:

 $\Delta A(y,x) = e^{-10(x^*x + y^*y)}$

Execute a Jacobi Step on the Inner Points

 $A_{k+1}(iy,ix) = -0.25 * (rhs(iy,ix) - (A_k(iy,ix-1) + A_k(iy,ix+i) + A_k(iy-1,ix) + A_k(iy+1,ix)))$

Copy Values of Anew to A

```
for (int iy = 1; iy < NY-1; iy++)
{
    for( int ix = 1; ix < NX-1; ix++ )
    {
        A[iy][ix] = Anew[iy][ix];
    }
}</pre>
```


Apply Periodic Boundary Conditions

```
//Periodic boundary conditions
for( int ix = 1; ix < NX-1; ix++ )
{
       A[0][ix] = A[(NY-2)][ix];
        A[(NY-1)][ix] = A[1][ix];
}
for (int iy = 1; iy < NY-1; iy++)</pre>
{
       A[iy][0] = A[iy][(NX-2)];
        A[iy][(NX-1)] = A[iy][1];
}
```


Serial Version jacobi/1_serial

Serial Runtime

Compile the code

\$ make

pgcc -Minfo -fast -c poisson2d.c main:

- 54, Generated vector simd code for the loop FMA (fused multiply-add) instruction(s) generated
 65, Memory zero idiom, loop replaced by call to __c mzero8
- 84, FMA (fused multiply-add) instruction(s) generated
- 90, Generated vector simd code for the loop containing reductions
- 100, Memory copy idiom, loop replaced by call to $_c_mcopy8$
- 107, Loop not fused: dependence chain to sibling loop Generated vector simd code for the loop Residual loop unrolled 2 times (completely unrolled)
- 112, Loop not fused: function call before adjacent loop Loop unrolled 8 times

pgcc -Minfo -fast poisson2d.o -o run

Run the code (on single CPU core)

\$ bsub submit.lsf

Job <11536> is submitted to default queue <batch>.

\$ jobstat

		Running J	obs: 1	(1 of 16	nodes,	6.25%)	
JobId	Username	Project	Nodes	Remain	StartT	ime	JobName
11536	t4p	GEN117	1	8:48	02/24	10:03:14	serial
		Eligible	Jobs: 0				
Blocked Jobs: 0							

\$ less serial.11536

800, 0.249524 900, 0.249464

· · · . . .

Elapsed Time (s): 94.9856

Jacobi relaxation Calculation: 4096 x 4096 mesh 0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583

(Enter q to quit/exit less)

Single GPU Version jacobi/2_single_gpu

Difference From Serial Version

 Added OpenACC pragmas to inform compiler where to offload work to GPU

#pragma acc kernels

 Added (optional) serial version to compare with timing and results of GPU version

```
// Set to 1 to run serial test, otherwise 0
int serial_test = 0;
```


Runtime of Single GPU Version

Compile the code

\$ make

pgcc	-acc	-Minf	fo=acc	-ta=	=tesla:cc	70 -:	fast	-c	poiss	on2c	d.d	С
main:	:											
		-						-				

1	<pre>L1/, Generating implicit copyin(A[:][:],rhs[1:4094][1:4094])</pre>
	Generating implicit copyout(Anew[1:4094][1:4094])
1	18, Loop is parallelizable
1	20, Loop is parallelizable
	Accelerator kernel generated
	Generating Tesla code
	118, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
	120, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
	124, Generating implicit reduction(max:error)
1	28, Generating implicit copyin(Anew[1:4094][1:4094])
	Generating implicit copyout(A[1:4094][1:4094])
1	.29, Loop is parallelizable
1	.31, Loop is parallelizable
	Accelerator kernel generated
	Generating Tesla code
	129, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
	131, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
1	<pre>.38, Generating implicit copy(A[:][1:4094])</pre>
1	.39, Loop is parallelizable
	Accelerator kernel generated
	Generating Tesla code
	139, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x *
1	.44, Generating implicit copy(A[1:4094][:])
1	.45, Loop is parallelizable
	Accelerator kernel generated
	Generating Tesla code
	145, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x *
pgcc	-acc -Minfo=acc -ta=tesla:cc70 -fast poisson2d.o -o run

Run the code (on single GPU)

\$ bsub submit.lsf

/

\$ less single_gpu.JOBID

Jacobi relaxation Calculation: 4096 x 4096 mesh Parallel Execution...

0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524 900, 0.249464 Elapsed Time (s) - Parallel:

31

Runtime of Single GPU Version

Compile the code

\$ make

pgcc	-acc	-Minfo=acc	-ta=tesla:cc70	-fast	-c	poisson2d.c
main:						

117, Generating implicit copyin(A[:][:],rhs[1:4094][1:4094]) Generating implicit copyout (Anew [1:4094] [1:4094]) 118, Loop is parallelizable 120, Loop is parallelizable Accelerator kernel generated Generating Tesla code 118, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */ 120, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */ 124, Generating implicit reduction(max:error) 128, Generating implicit copyin(Anew[1:4094][1:4094]) Generating implicit copyout (A[1:4094][1:4094]) 129, Loop is parallelizable 131, Loop is parallelizable Accelerator kernel generated Generating Tesla code 129, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */ 131, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */ 138, Generating implicit copy(A[:][1:4094]) 139, Loop is parallelizable Accelerator kernel generated Generating Tesla code 139, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 144, Generating implicit copy(A[1:4094][:]) 145, Loop is parallelizable Accelerator kernel generated Generating Tesla code 145, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ pqcc -acc -Minfo=acc -ta=tesla:cc70 -fast poisson2d.o -o run

Run the code (on single GPU)

\$ bsub submit.lsf

\$ less single_gpu.JOBID

Jacobi relaxation Calculation: 4096 x 4096 mesh Parallel Execution...

0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524 900, 0.249464 Elapsed Time (s) - Parallel: 127.2326

Why are we slower than serial version??

How can we answer such questions?

32

Using NVIDIA's NVProf Profiler, we see...

\$ bsub submit.lsf (jsrun --smpiargs="none" -n1 -c1 -g1 -a1 nvprof -s -o single_gpu.%h.\${LSB_JOBID}.nvvp ./run)

\$ less single gpu.JOBID

==56446== NVPROF is profiling process 56446, command: ./run ==56446== Profiling application: ./run

Jacobi relaxation Calculation: 4096 x 4096 mesh Parallel Execution...

0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524 900, 0.249464 Elapsed Time (s) - Parallel: 130.9012

==56446== Profiling result: Type Time(%)

GPU activities:

Time(%) Time	Calls	Avg	Min	Max	Name
53.55	% 14.4180s	41000	351.66us	1.3110us	382.72us	[CUDA memcpy HtoD]
42.84	% 11.5335s	33000	349.50us	1.7590us	362.53us	[CUDA memcpy DtoH]
2.01	§ 541.55ms	1000	541.55us	539.61us	546.01us	main_120_gpu
1.38	% 372.18ms	1000	372.18us	369.47us	376.64us	main_131_gpu
0.19	% 49.816ms	1000	49.815us	48.448us	51.231us	main_124_gpured
0.02	% 6.1174ms	1000	6.1170us	5.7270us	6.9760us	main_145_gpu
0.01	% 2.1649ms	1000	2.1640us	1.8880us	2.8480us	main_139_gpu

Do we really need all these data transfers?

Let's look at visual output (and compiler output) to see what's going on...

Transfer .nvvp file from Ascent/Summit to local system

From your local system:

\$ scp USERNAME@login1.ascent.ccs.ornl.gov:/path/to/file/remote /path/to/desired/location/local

Using NVIDIA's Visual Profiler, we see...

35

National Laboratory

Where are arrays actually needed?

CAK RIDGE

National Laboratory

36

jacobi/2_single_gpu
Single GPU Version with Data Regions jacobi/3_single_gpu_data

Difference From Initial GPU Version

Added a data region around while loop

```
#pragma acc data ...
{
   while loop
}
```

• Still have (optional) serial version to compare with timing and results of GPU version

```
// Set to 1 to run serial test, otherwise 0
int serial_test = 0;
```


Runtime of Single GPU Version with Data Directives

Compile the code

\$ make

- pgcc -acc -Minfo=acc -ta=tesla:cc70 -fast -c poisson2d.c
 main:
 - 112, Generating copyin(rhs[:][:])
 Generating create(Anew[:][:])
 Generating copy(A[:][:])
 - 121, Loop is parallelizable
 - 123, Loop is parallelizable Accelerator kernel generated
 - Generating Tesla code
 - 121, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
 - 123, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
 - 127, Generating implicit reduction(max:error)
 - 132, Loop is parallelizable
 - 134, Loop is parallelizable Accelerator kernel generated
 - Generating Tesla code
 - 132, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
 - 134, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
 - 142, Loop is parallelizable
 - Accelerator kernel generated
 - Generating Tesla code
 - 142, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
 - 148, Loop is parallelizable
 - Accelerator kernel generated
 - Generating Tesla code
- 148, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ pgcc -acc -Minfo=acc -ta=tesla:cc70 -fast poisson2d.o -o run

Run the code (on single GPU)

\$ bsub submit.lsf

\$ less single_gpu_data.JOBID

Jacobi relaxation Calculation: 4096 x 4096 mesh Parallel Execution...

- 0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524
- 900, 0.249464
- Elapsed Time (s) Parallel:

39

Using NVIDIA's NVProf Profiler, we see...

\$ bsub submit.lsf (jsrun --smpiargs="none" -n1 -c1 -g1 -a1 nvprof -s -o single_gpu_data.%h.\${LSB_JOBID}.nvvp ./run)

\$ less single_gpu_data.JOBID

==139388== NVPROF is profiling process 139388, command: ./run ==139388== Profiling application: ./run

Using NVIDIA's Visual Profiler, we see...

We have eliminated the unnecessary data transfers.

41

jacobi/3_single_gpu_data

Multiple GPU Version (OpenMP + OpenACC) jacobi/4_multiple_gpu_openmp

• Each OpenMP thread calculates its own loop bounds for its portion of the domain and uses its own GPU.

OpenMP Thread $0 \Rightarrow$ GPU 0

OpenMP Thread $1 \Rightarrow$ GPU 1

OpenMP Thread $2 \Rightarrow$ GPU 2

OpenMP Thread $3 \Rightarrow$ GPU 3

jacobi/4_multiple_gpu_openmp

#pragma omp parallel default(shared) firstprivate(num_threads, thread_num){}


```
#pragma omp master
{
    // Set rhs
    for (int iy = 1; iy < NY-1; iy++)
    {
        for (int ix = 1; ix < NX-1; ix++ )
        {
            const double x = -1.0 + (2.0*ix/(NX-1));
            const double y = -1.0 + (2.0*iy/(NY-1));
            rhs[iy][ix] = exp(-10.0*(x*x + y*y));
        }
    }
    /* pragma omp master */
    COAK RIDGE
    National Laboratory
</pre>
```

44

Only the master thread needs to set value of rhs

```
jacobi/4_multiple_gpu_openmp
```

Thread 0's copy of its rows of A (on GPU 0) CPU copy of A

Thread 1's copy of its rows of A (on GPU 1)

jacobi/4 multiple gpu openmp


```
#pragma acc kernels
   for (int iy = iy_start; iy < iy_end; iy++)</pre>
                                                                  After GPUs update their values
   {
      for( int ix = ix start; ix < ix end; ix++ )</pre>
                                                                     of A, the CPU copy is no
      {
                                                                          longer correct
         Anew[iy][ix] = -0.25 * (rhs[iy][ix] - (A[iy][ix+1] + A[iy][ix-1]))
                                       + A[iy-1][ix] + A[iy+1][ix] ));
         error = fmax( error, fabs(Anew[iy][ix]-A[iy][ix]));
 Thread 0's copy of its rows of A
                                       CPU copy of A
                                                                Thread 1's copy of its rows of A
                                                                         (on GPU 1)
          (on GPU 0)
                                    CAK RIDGE
```

jacobi/4 multiple gpu openmp

46 **WAK KIDGE** National Laboratory

Recall that boundary conditions must be updated for A matrix as a whole

- But each GPU only has its rows of A
- So some data must be passed back to CPU

CPU copy of A

#pragma acc update self(A[iy_start:1][0:NX], A[(iy_end-1):1][0:NX])

Each thread updates the "shared" CPU copy of A with its "2nd-to-top" row and "2nd-to-bottom" row

es	<pre>if(0 == {</pre>	(iy_start-1)))			
op/Botto 3oundarie	for {	(int ix = 1; A[0][ix]	ix =	< NX-1; A[(NY-2)	ix++][ix]);
<u> </u>	}					

if((NY-1) == (iy end))Boundaries { for (int ix = 1; ix < NX-1; ix++) Side A[(NY-1)][ix] = A[1][ix];

Only the threads with $(0 == (iy_start-1))$ and $((NY-1) == (iy_end))$ perform the boundary updates

Thread 0's copy of its rows of A (on GPU 0) CPU copy of A

Thread 1's copy of its rows of A (on GPU 1)

49

#pragma acc update device(A[(iy_start-1):1][0:NX], A[iy_end:1][0:NX])

Each thread updates its "top" row and "bottom" row from the new values of the CPU copy of A

Runtime of Multi-GPU Version (with Data Directives)

Compile the code

\$ make

AK RIDGE

National Laboratory

51

pgcc -acc -Minfo=acc -ta=tesla:cc70 -mp -fast -c poisson2d.c poisson2d_serial: main:	\$ si
103, Generating implicit copyout(A[:][:],A ref[:][:])	
104, Loop is parallelizable	
106, Loop is parallelizable	
Accelerator kernel generated	
Generating Tesla code	
104, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */	
106, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */	
167, Generating copyin(rhs[iv_start:iv_end-iv_start][:])	
Generating create (Anew[iv start:iv end-iv start][:])	
Generating copy(A[iy start-1:iy end-iy start+2][:])	
181, Loop is parallelizable	Pa
183, Loop is parallelizable	
Accelerator kernel generated	
Generating Tesla code	
181, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */	
183, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */	
187, Generating implicit reduction(max:error)	
200, Loop is parallelizable	
202, Loop is parallelizable	
Accelerator kernel generated	
Generating Tesla code	
200, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */	E
202, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */	
<pre>211, Generating update self(A[iy_start][:],A[iy_end-1][:])</pre>	
<pre>230, Generating update device(A[iy_start-1][:],A[iy_end][:])</pre>	
231, Loop is parallelizable	
Accelerator kernel generated	
Generating Tesla code	
231, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */	1
pqcc -acc -Minfo=acc -ta=tesla:cc70 -mp -fast poisson2d.o -o run	

Run the code (on 2 GPUs)

\$ bsub submit2.1sf

less multi gpu 20mp ingle-GPU Execution... 0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524 900, 0.249464 arallel Execution... 0, 0.250000 100, 0.249940 200, 0.249880 300, 0.249821 400, 0.249761 500, 0.249702 600, 0.249642 700, 0.249583 800, 0.249524 900, 0.249464

lapsed Time (s) - Serial: 1.0990, Parallel: 0.6692, Speedup: 1.6424

jacobi/4_multiple_gpu_openmp

Using NVIDIA's Visual Profiler, we see...

OpenMP Thread 0 (GPU 0)

						NIV									
		K S P 🙏	•			144									
t •multiple_pu_2omp.nvvp ∺	3														
	2197.65 ms	2197.7 ms	2197.75 ms	2197.8 ms	2197.85 ms	2197.9 ms	2197.95 ms	2198 ms	2198.05 ms	2198.1 ms	2198.15 ms	2198.2 ms	2198.25 ms	2198.3 r	ns 2198.3
+ Process "run" (14531)	1	1		1	1	1		1		1		1			
[0] Tesla V100-SXM2-16GB															
Context 1 (CUDA)					Or	ne itera	tion of th	ne while	e loon						
L 🍸 MemCpy (HtoD)					01				oloop						
⊢ 🍸 MemCpy (DtoH)															
+ Compute			poisson2d_se	rial_1F1L70_18	3_gpu	-	poisson2d		poisson	2d_serial_1F1L7	0_202_gpu				
Streams															_
Stream 25		_	poisson2d_se	rial_1F1L70_18	3_gpu	-	poisson2d		poisson	2d_serial_1F1L7	0_202_gpu				
[1] Tesla V100-SXM2-16GB															
Context 2 (CUDA)															
└ 🐺 MemCpy (HtoD)															
– 🕤 MemCpy (DtoH)							I					- I			
🛨 Compute			poisson2d_se	rial_1F1L70_18	3_gpu		poisson2d_s		poisson	2d_serial_1F1L7	'0_202_gpu				
Streams															
⊢ Stream 24			poisson2d_se	rial_1F1L70_18	3_gpu		poisson2d_s		poisson	2d_serial_1F1L7	'0_202_gpu				
	<u> </u>														

OpenMP Thread 1 (GPU 1)

jacobi/4_multiple_gpu_openmp

Multiple MPI Ranks

Redundant Matrix Multiply

Each MPI rank is mapped to a GPU and performs the same steps (hence, redundant):

- Fill 2 NxN matrices with random numbers
- Perform a matrix multiply on CPU
- Perform a matrix multiply on GPU (loop_count times)
- Check for consistency between CPU and GPU results

Each MPI rank prints

- Its rank ID
- The hardware thread, GPU, and compute node it ran on
- Its total runtime and time spent computing on GPU

Multiple MPI Ranks

redundant MM

Multiple MPI Ranks

Compile the code

\$ make

Run the code

\$ bsub submit.lsf

From submit.lsf

jsrun -n1 -c42 -g6 -a2 -bpacked:7 nvprof -o mat_mul.\${LSB_JOBID}.%h.%q{OMPI_COMM_WORLD_RANK}.nvvp ./redundant_mm 2048 100 | sort

%q{OMPI COMM WORLD RANK} (Replace with MPI Rank)

\$ cat mat mul.12233

•••

==127243== Generated result file: /gpfs/wolf/stf007/scratch/t4p/nvidia_profilers/redundant_MM/mat_mul.12233.h49116.1.nvvp ==127242== Generated result file: /gpfs/wolf/stf007/scratch/t4p/nvidia_profilers/redundant_MM/mat_mul.12233.h49n16.0.nvvp

(N = 2048) Max Total Time: 3.524076 Max GPU Time: 0.308476 Rank 000, HWThread 008, GPU 0, Node h49n16 - Total Time: 3.520249 GPU Time: 0.308134 Rank 001, HWThread 054, GPU 1, Node h49n16 - Total Time: 3.524076 GPU Time: 0.308476

. . .

2 Select "Nvprof" then "Next >"

1 File->Import

KVIDIA Visual Profiler	File View Wind	dow Help		00					
	Provident Session Open Clone Session	第N 第O 압米C	Select Import profile data generated by nvprof.	Nvprof Import					
	📓 Save	жs	Select an import source:	 Sing Mult 					
	Save All	企業S	Command-line Profiler						
	👌 Import	% I	Nvprof						
			Import Nvprof Data						
4		Import Prof Select nvp	ile Data for Multiple Processes prof profile files containing timeline data for multiple	processes					
Click "Browse" next to "Timeline locate the .nvvp files on your lo	e data file" to ocal system,		Profile Files Timeline Options						
	files	Connection: Local							
		The nvpro	f profile files:						

3 Select "Multiple Process" then "Next >"

Nvprof profile files
Import profile data for a

Multiple processes

Single process

Manage connections...

Browse...

57

Multiple MPI Ranks

<u>Run the code</u>	From submit.lsf
\$ bsub submit_named.lsf	jsrun -n1 -c42 -g6 -a2 -bpacked:7 \ nvprof -s -o mat mul.\${LSB JOBID}.%h.%q{OMPI COMM WORLD_RANK}.nvvp \ context-name "MPI Rank %q{OMPI_COMM_WORLD_RANK}" \ process-name "MPI Rank %q{OMPI_COMM_WORLD_RANK}" ./redundant_mm 2048 100 sort
	Name the Process and CUDA Context

\$ cat mat_mul.12240

•••

==144939== Generated result file: /gpfs/wolf/stf007/scratch/t4p/nvidia_profilers/redundant_MM/mat_mul.12240.h49n16.0.nvvp ==144938== Generated result file: /gpfs/wolf/stf007/scratch/t4p/nvidia profilers/redundant MM/mat_mul.12240.h49n16.1.nvvp

(N = 2048) Max Total Time: 3.634345 Max GPU Time: 0.311632

Rank 000, HWThread 024, GPU 0, Node h49n16 - Total Time: 3.634345 GPU Time: 0.311632 Rank 001, HWThread 053, GPU 1, Node h49n16 - Total Time: 3.622655 GPU Time: 0.310216

•••

visual profiler sections

Multiple MPI Ranks (annotating with NVTX)

redundant MM nvtx

And added the following NVIDIA Tools Extension library to the Makefile: -InvToolsExt

CAK RIDGE

62

Multiple MPI Ranks

Compile the code

\$ make

Run the code

\$ bsub submit.lsf

Same process as previous version of the code

*mat_mul_nvtx.12243.h49n16.0.nvvp 🛙													
	0 s	0.25 s	0.5 s	0.75 s	1 s	1.25 s	1.5 s	1.75 s	2 s	2.25 s	2.5 s	2.75 s	3 s
- Process "MPI Rank 0" (1483													
Thread 310816													
Runtime API			cudaMallo	0C							cudaFree	cudaEventSynchroniz	e
Driver API													
+ Markers and Ranges			Allocate arrays (Cl	PU & GPU)		Initialize Arrays (CPU)		CPU DGE	MM	CL	JBLAS Initialization	GPU DGEMM (loop_cou	
Profiling Overhead													
- Process "MPI Rank 1" (1483													
Thread 310816													
Runtime API			cudaM	alloc							cudaFree	cudaEventSynchro	ize
Driver API													
+ Markers and Ranges			Allocate arrays	(CPU & GPU)		Initialize Arrays (CPU)		CPU D	GEMM		CUBLAS Initialization	GPU DGEMM (loop_c	bun
Profiling Overhead													
[0] Tesla V100-SXM2-16GB													
 Context MPI Rank 0 (CUDA) 													
- 🍸 MemCpy (HtoD)													
– 🍸 MemCpy (DtoH)													
+ Compute													
+ Streams													
[1] Tesla V100-SXM2-16GB													
 Context MPI Rank 1 (CUDA) 													
MemCpy (HtoD)													
- 🍸 MemCpy (DtoH)													
+ Compute													
+ Streams													

Now we have a better (and fuller) mapping to what is happening in our code.

Multiple MPI Ranks (Unified Memory)

redundant_MM_UM

Redundant Matrix Multiply – Visual Profiler + UM + NVTX									
/*Allocate memory for arrays on CPU and GPU	/* Transfer data from CPU to GPU								
RANGE_PUSH("Allocate CPU and UM arrays", CLR_YELLOW);	// No explictit data transfer required for arrays allocated with cudaMallocManaged								
<pre>// Allocate memory for C_cpu on CPU double *C_cpu = (double*)malloc(N*N*sizeof(double));</pre>									
<pre>// Allocate memory for A, B, C for use on both CPU and GPU double *A, *B, *C; cudaErrorCheck(cudaMallocManaged(&A, N*N*sizeof(double))); cudaErrorCheck(cudaMallocManaged(&B, N*N*sizeof(double))); cudaErrorCheck(cudaMallocManaged(&C, N*N*sizeof(double)));</pre>	<pre>/* Transfer data from GPU to CPU</pre>								

RANGE_POP;

Then use the common pointers on both CPU and GPU

Multiple MPI Ranks

Compile the code

\$ make

Run the code

\$ bsub submit.lsf

Same process as previous version of the code

When data is needed on GPU (for the first GPU DGEMM), GPU page faults trigger data migration from CPU to GPU. When data is needed on CPU (to compare CPU/GPU results), CPU page faults trigger data migration from GPU to CPU.

The time for the 1st GPU DGEMM is increased due to page faults and data migration, while subsequent calls are not since data is already on the GPU

	3.13 s	3.14 s	3.15 s	3.16 s	3.17 s	3.18 s	3.19 s	3.2 s	3.21 s	3.22 s
🛨 Process "MPI Rank 1" (67517)										
Process "MPI Rank 0" (67516)										
 Thread 310560 										
Runtime API										
L Driver API										
Markers and Ranges										
Profiling Overhead	Instrume								,	
 Unified Memory 										
- T CPU Page Faults										
[0] Tesla V100-SXM2-16GB										
 Unified Memory 										
- 🍸 Data Migration (DtoH)										
- T GPU Page Faults		1	GPU Pa	e Faults			GPU Page Fault	ts		
- 🍸 Data Migration (HtoD)	Groups of		Data Migra	tion (HtoD)	1		Data Migration (H	toD)		
Context MPI Rank 0 (CUDA)										
- T MemCpy (HtoD)	page launs									
- Compute	for a given			volt	a dgemm_64x64_nn		volta volta vol	ta volta volta volta	volta volta volta	a volta volta v
└ \ 100.0% volta_dg	time period	/		volt	a dgemm 64x64 nn		volta volta vol	ta volta volta	volta volta volta	a volta volta v
- Streams									_	
└ Stream 7				volt	a_dgemm_64x64_nn		volta volta vol	ta volta volta volta	volta volta volta	a volta volta v
+ [1] Tesla V100-SXM2-16GB									_	
	Properties X					Properties 🕅			8	
						Troperices to				
	GPU Page Fault groups	r this timeline. In this mode the t	timeline is solit into equal width segments an	4		Data Migration (HtoD)	ad for this timeline. In this mode the	timeline is split into equal width segments	and	
	only aggregated data values for	or each time segment are shown	n.	-		only aggregated data val	ues for each time segment are show	vn.		
	Start		3.139 s (3,138,706,395 ns			Start		3.139 s (3,138,706,395	ns)	
	Duration		36.077 ms (36,077,085 ns)			Duration		3.175 s (3,174,783,480 36.077 ms (36,077,085	ns)	
	Virtual Address Range		0x200080000000 - 0x20			Size		65.012 MB	,	
	GPU Page Faults		14022			Throughput				
	Duration of GPU page fault	ults	26.821 ms			Min Max		18.124 GB/s 41.98 GB/s		
	Process		67516			Virtual Address Rang	je	0x20008000000 - 0x2	0	
						Duration of HtoD dat	a migrations	2.305 ms		
						Process		67516		
	The time taken to resolve GP	U page faults within the segmen	nt			The time taken for data	migrations from host to device with	in the segment		
	0 - 10 % [0 - 3	3.608 ms]				0 - 10 %	[0 - 3.608 ms]			
	10 - 20 % [3.60	08 ms - 7.215 ms]				10 - 20 %	[3.608 ms - 7.215 ms]			
	20 - 30 % [7.21	15 ms - 10.823 ms]				20 - 30 %	[7.215 ms - 10.823 ms]			
	30 - 40 % [10.8	323 ms - 14.431 ms]				30 - 40 %	[10.823 ms - 14.431 ms]			
	40 - 50 % [14.4	431 ms - 18.039 ms]				40 - 50 %	[14.431 ms - 18.039 ms]			
	50 - 60 % [18.0	039 ms - 21.646 ms]				50 - 60 %	[18.039 ms - 21.646 ms]			
	60 - 70 % [21.6	546 ms - 25.254 ms]				60 - 70 %	[21.646 ms - 25.254 ms]			
		254 ms - 28.862 ms]				70 - 80 %	[25.254 ms - 28.862 ms]			
71 National Laborat	90 - 100 % [28.8	2 469 ms]				90 - 100 %	[20.002 ms - 32.409 ms] [> 32 469 ms]			
	00-100% [23					00 100 %				

Kernel Analysis

Kernel Analysis – Gathering Details Remotely

1. Gather a timeline for a **short** run.

\$ jsrun --smpiargs="none" -n1 -c1 -g1 -a1 nvprof -fo single gpu data.timeline100.nvprof ./run

2. Gather matching "analysis metrics" (Runtime will explode due to each kernel being replayed multiple times.

\$ jsrun --smpiargs="none" -n1 -c1 -g1 -a1 nvprof --analysis-metrics -fo single gpu data.metrics100.nvprof ./run

If you cannot shorten your run any longer, it's possible to use the --kernels option to only replay some kernels, but guided analysis may not work as well.

Kernel Details – Import into Visual Profiler

1 File->Import

Ś	NVIDIA Visual Profiler	File	View	Window	v Hel	lp
		*	New Se	ssion	ЖN	
📫 🖪 K		Op	en		жo	
		Clo	ne Sess	ion 🕆	жC	
			Save		жs	
			Save As			
		Q	Save Al	Û	жs	
		è	Import		۴I	
		_				

Select

Import profile data generated by nvprof.

Select an import source:

Command-line Profiler

Nvprof

Select "Single Process"

Select "Nvprof" then "Next >"

💺 Import Nvprof D	ata				×
Import Profile D	ata for Single Process				
Select one nvprof p event and metric v	ofile file containing timeline data and zero or more addition nvprof profile files containing lues.				
Profile Files Time	ne Options				
Connection:	Local ~	Manag	ge coi	nnectio	ns
Timeline data file: Event/Metric data f	C:\Users\jlarkin\OneDrive - NVIDIA Corporation\2019\Profilers Tutorial\single_gpu_data.tin	neline1	00.nv	Brow	se
C:\Users\jlarkin\O	eDrive - NVIDIA Corporation\2019\Profilers Tutorial\single_gpu_data.metrics100.nvprof			Brow Rem	se ove

4

Click "Browse" next to "Timeline data file" to locate the .nvprof file on your local system, then do the same for "Event/Metric data files," then click "Finish"

CAK RIDGE National Laboratory

Visual Profiler Import – Common Warning

File View Window Run Help Image: Section of the	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s		1 s
Image:	0.4 s	0,5 s	0.6 s	0.7 s	s 0.8 s 0.9 s cuDevicePrimaryCtxR □		1 s	
▼single_gpu_data.timeline100.nvprof ∅ 0.1 s 0.2 s 0.3 s ■ Process "run" (176968) ■ <td>0.4 s etain</td> <td>0.5 s</td> <td>0.6 s</td> <td>0.7 s</td> <td>0.8 s</td> <td>0.9 s</td> <td></td> <td>1 s</td>	0.4 s etain	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s		1 s
0 s 0.1 s 0.2 s 0.3 s Process "run" (176968) - - Thread 294448 - - OpenACC - - Driver API cuDevicePrimaryCtxRet Profiling Overhead - [0] Tesla V100-SXM2-16GB - [] Context 1 (CUDA) - [] Y MemCpy (HtoD) -	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s		1 <u>s</u>
 Process "run" (176968) Thread 294448 OpenACC Driver API cuDevicePrimaryCtxRe Profiling Overhead [0] Tesla V100-SXM2-16GB Context 1 (CUDA) \ ™ MemCpy (HtoD) 	2vorfiler - ovr Byn Heip - attrinetine100.0xppcf 32 - 0 s 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 0.6 s 0.7 s 0.8 s 0.9 s 16 - <td></td> <td>^</td>		^					
Thread 294448 CopenACC Driver API Profiling Overhead [0] Tesla V100-SXM2-16GB Context 1 (CUDA) U Y MemCpy (HtoD)	WOULA Visual Profile							
└ OpenACC └ Driver API CuDevicePrimaryCtxRe └ Profiling Overhead ○ [0] Tesla V100-SXM2-16GB ○ Context 1 (CUDA) └ \ MemCpy (HtoD)	MDDL Visual Profiler - We Window Bun Heip - Single, gou, data timeline100.mprof SL - None 0 Process Touri (17696) 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 0.6 s 0.7 s 0.9 s							
L Driver API cuDevicePrimaryCtxR L Profiling Overhead Image: Context 1 (CUDA) Image: Context 1 (CUDA) Image: Context 1 (CUDA) Image: Context 1 (CUDA) Image: Context 1 (CUDA)	etain							
Profiling Overhead [0] Tesla V100-SXM2-16GB Context 1 (CUDA)					cuDevicePrimaryCtxF	0.9 s		
[0] Tesla V100-SXM2-16GB Context 1 (CUDA) \[\frac{1}{2} MemCpy (HtoD) \]								
Context 1 (CUDA) \[\screwtytem="context-align: center;" MemCpy (HtoD)								
L 🍸 MemCpy (HtoD)								
L 🍸 MemCpy (DtoH)								_
🗔 Analysis 🕱 💼 GPU Details (Summary) 🎫 CPU Details 🧊 OpenACC Details 📷 OpenMP Details 🗐	Console	🖩 Settings			Properties 🛛			
🔚 🗄 🔂 🔤 Export PDF Report Results								
1. CUDA Application Analysis	- - - - 0.1 s 0.2 s 0.4 s 0.5 s 0.6 s 0.7 s 0.4 s 0.9 s cuDexicePrimaryCbRetain - - - - - - vD Details OpenACC Details © OpenAMP Details © Console Settings - - - Results - - - - - - - - v - <	e properti	25					
Start with a high- level overview of application performance.								

76

💺 NVIDIA Visual Profiler									_		×
<u>File V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp											
	🗓 🖏 🔍 🗸 🛛 🤅	Ð, Q, Ð, I 🗉 I F 🖡	、 🔣 🚉 🖳 🛛	Å •							
single_gpu_data.timeline100.nvprof	x									r	- 8
0 s	0.1	s 0.2 s	0.3 s	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s		1 s
Process "run" (176968)											^
Thread 294448											
└ OpenACC											
L Driver API			cuDevicePrimary	/CtxRetain				cuDevicePrimaryCtxR			
Profiling Overhead											
[0] Tesla V100-SXM2-16GB											
 Context 1 (CUDA) 											
🗆 🍸 MemCpy (HtoD)											
L 🍸 MemCpy (DtoH)											
			1							ee propertie	
Most applications	ary) 🔠 CPU Det	ails 📺 OpenACC Details esults	🗑 OpenMP Deta	ils 🖳 Console 🗌	🖬 Settings	\		Properties 🛛			
will see these.		A Low Memcpy/Kernel	Overlap [0 ns / 8.9	3188 ms = 0% 1			^	Select or highlight a single	e interval to see	propertie	es
1. CODA Application Analysis		The percentage of time w	hen memcpy is beir	ng performed in pa	rallel with kernel is lo	ow.					
2. Check Overall GPU Usage		A Law Kara I Carawa									
The analysis results on the right indicate	potential	Low Kernel Concurre The perceptage of time will	ncy [0 ns / 97.2022	ms = 0% j	aarallel is low						
of the GPU's available compute and data	movement	The percentage of time w	nen two kernels are	being executed in	parallel is low.		_				
capabilities. You should examine the infor provided with each result to determine if	mation vou can	Low Memcpy Throug	hput [6.775 MB/s a	ivg, for memcpys a	ccounting for 3.5%	of all memcpy time]		Also co	ommon	. mc	VĽ
make changes to your application to incre	ease GPU	The memory copies are no	ot fully using the av	ailable host to devi	ce bandwidth.			indicat		e of	. /
		💧 Low Memcpy Overla	p [0 ns / 3.0515 ms	= 0%]				unninn	ed me	mon	18
🖳 Examine Individual Kerne	ls ·	The percentage of time w	hen two memory co	pies are being perf	ormed in parallel is	low.				n Or) Nata	γœ
You can also examine the performance of individual ke	meis to expose	💧 Low Compute Utiliza	tion [97.2522 ms / 8	877.80852 ms = 11.1	1%]			Synchro	Shoos (Jaia	
adational optimization opportantices.	· ·	The multiprocessors of on	e or more GPUs are	mostly idle.				copies			
May indicate		i Compute Utilization					_				
insufficient •		The device timeline shows	an estimate of the	amount of the tota	I compute capacity	being used by the kernel	ls ex				
amount of work					1	, .,					
GITTOUTI OF WORK.		1 NVLink Analysis		- In the INDUCT		CDU CDU- A-L					
	<	i ne tollowing NVLink top	biogy diagram show	vs logical NVLink co	onnections between	GPUs and CPUs. A logic					

Visual Profiler										-	
File view window Kun Help		- (() - (K 5 P .	•						
single gpu data.timeline100.nvpr	of X	1440									
• ·····) s	0.1 s	0.2 s	0.3 s	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s	
Process "run" (176968)		I		I	I		I	I	I		
 Thread 294448 											
└ OpenACC											
L Driver API				cuDevicePrimaryCt	xRetain				cuDevicePrima	aryCtxR	
Profiling Overhead											
[0] Tesla V100-SXM2-16GB											
Context 1 (CUDA)											
🗆 🍸 MemCpy (HtoD)											
🗆 🍸 MemCpy (DtoH)											
					1	1			• 	1	
🔚 Analysis 🛛 🧱 GPU Details (Sum	nmary) 🔠 CPL	J Details 🛛 📺 🕻	OpenACC Details	🏢 OpenMP Details	📮 Console 🗔 Se	ttings		∖ □ □	Properties 🛛		
🔚 🗄 🗘 🔛 🛄 Export PDF	Report	Results									
1. CUDA Application Analysis		💧 Low N	Memcpy/Kernel 0	verlap [0 ns / 8.931	88 ms = 0%]				Select or highlight	a single interval to	see prope
2. Check Overall GPU Usage		The perce	ntage of time whe	n memcpy is being	performed in paralle	with kernel is l	ow.				
The analysis results on the right indicat	te potential	🗧 💧 Low 🛛	Cernel Concurren	cy [0 ns / 97.2522 m	s = 0%]						
problems in how your application is ta	king advantage	The perce	ntage of time whe	n two kernels are be	ing executed in para	lel is low.					
capabilities. You should examine the in	formation	💧 Low N	Memcpy Through	out [6.775 MB/s avg	, for memcpys acco	unting for 3.5%	of all memcpy time	•]			
provided with each result to determine make changes to your application to in	e if you can Icrease GPU	The mem	ory copies are not	fully using the availa	ble host to device b	andwidth.					
utilization.		A low M	Memcov Overlap	0 ns / 3.0515 ms = ()% 1						
🖳 Examine Individual Ker	nels	The perce	ntage of time whe	n two memory copi	es are being perform	ed in parallel is	low.				
You can also examine the performance of individua	Hernels to expose	Alow(- Compute I Itilizati	n [07 2522 ms / 877	200952 ms = 11.1% 1						
additional optimization opportunities.		The multi	processors of one	or more GPUs are m	ostly idle.						
		i Comp	oute Utilization								
		The devic	e timeline shows a	n estimate of the an	nount of the total co	mpute capacity	being used by the l	kernels ex			
		i NVI in	nk Analysis								
		i NVLin	n k Analysis ving NVLink topol	ogy diagram shows l	ogical NVLink conne	ections between	GPUs and CPUs. A	logical N' 🗸			

Next zoom in on individual kernel optimizations.

CAK RIDGE National Laboratory

	💺 NVIDIA Visual Profiler										_	ΟX
	<u>File View Window Run H</u> elp											
		🕕 🛶 🔍 🗸	\odot \odot \odot	🖃 F 🔭	K 📮 🔜 📩 🕶							
	💺 *single_gpu_data.timeline100.nvp	rof 🖾										- 8
		0 s 0.1	1 s	0.2 s	0.3 s	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s	1 s
	Process "run" (176968)											^
	Thread 294448											
	└ OpenACC											
	L Driver API				cuDevicePrimaryCtxRet	ain				cuDevicePrimary	CtxR	
	Profiling Overhead											
	[0] Tesla V100-SXM2-16GB											
	Context 1 (CUDA)											
	🗕 🍸 MemCpy (HtoD)								<u> </u>			
	└ 🍸 MemCpy (DtoH)											~
	🗔 Analysis 🔀 📴 GPU Details (Sur	nmary) 🔠 CPU De	etails 🕞 Oper	nACC Details [🖉 OpenMP Details 📃	Console	Settings		\	Properties 🛛		
	E 🗘 🚺 Export PDF	Report	Results									
	1. CUDA Application Analysis		i Kernel O	ptimization Prio	orities					Select or highlight a	single interval to see	properties
This table ranks	2. Performance-Critical Kernels		Optimization compared to	y kernels are orde of higher ranked lower ranked ker	ered by optimization in d kernels (those that ap rnels.	portance ba pear first in t	sed on execution tim he list) is more likely	to improve perfor	ccupancy. mance			
the kernels by bang for buck, click the top one. Click here to deep dive on the selected kernel.	The results on the right show your application will be running the distingthered by potential for performing over the sense of the sens	plication s rmance s with the entry from the s to discover	Rank Desc 100 [100 66 [100 37 [100 5 [100 2 [100	cription D kernel instance D kernel instance D kernel instance D kernel instance	s] main_123_gpu s] main_134_gpu s] main_127_gpu_red s] main_148_gpu s] main_142_gpu							
OAK RIDGE	or one new results at right to highlight the individua the analysis applies.	a kernels for Which										

Visual Profiler – Guided Analysis – Bandwidth Bound

The state of the s										—	
File View Window Run He	WIDIA Visual Profiler Yiew Window Run Help Image: gpu_data.timeline100.nvprof 0 s 0.1 s 0.2 s 0.3 s occess 'run' (176968) Thread 294448 OpenACC Driver API Profiling Overhead Tesla V100-SXM2-16GB Context 1 (CUDA) Image: GPU Details (Summary) <										
	//DIA Visual Profiler (iew Window Run Help (iew Window Run Help (igle_gpu_data.timeline100.nyprof 22 (igle_gpu_data.tigligle_gpu_data.timeline100.nyprof 22	% -									
*single_gpu_data.timeline100.	nvprof 🖾				-						
	VIOLA Visual Profiler Yiew Window Bun Help Image: gpu_data.timeline100.nyprof	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s					
Process "run" (176968)	A Visual Profiler	·	· · · · ·	•	· · · · · ·	•					
Thread 294448	IDIA Visual Profiler jew Window Run Help iew Window Run Help igle_gpu_data.timeline100.nvprof ⊠ istriction istriction <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
└ OpenACC											
L Driver API	IA Visual Profiler w Window Bun Help										
Profiling Overhead	IA Visual Profiler w Window Run Help										
[0] Tesla V100-SXM2-16GB	DIA Visual Profiler ew Window Run Help 										
Context 1 (CUDA)											
🗕 🍸 MemCpy (HtoD)											
🗕 🍸 MemCpy (DtoH)											
	(C)		0 ACC 0 1 1			. e					~]
	(Summary)	CPU Details La	Results	L# OpeniviP Detai		settings			N		···· ~ [
		лт. 	i Kernel Perfo	rmance is Bound I	Ry Memory Bandy	vidth				· · ·	
1. CUDA Application Analysis			1 Kemerreno	initialice is bound i	by memory bandy						
	WIDIA Visual Profiler Yiew Window Bun Help Image: gpu_data.timeline100.nvprof IX Image: gpu_data.timelintimage: g	the kernel's compu	ite utilization is sign	ificantly lower that	n its memory utilizatio	on. These	Select o	r hiahlial			
2. Performance-Critical Kernels	MDIA Visual Profiler Yiew Window Run Help Image: gpu_data.timeline100.nvprof S3 0 s 0.1 s 0.2 s 0.3 s occess "run" (176968) Thread 294448 OpenACC Driver API Profiling Overhead I testa V100-SXM2-1668 Context 1 (CUDA) YmmenCpy (HtoD) YmmenCpy (DtoH) Thread 294448 I testa V100-SXM2-1668 Context 1 (CUDA) YmmenCpy (DtoH) YmmenCpy (DtoH) Image: gpu is most likely limited by memory Intre 1 pin analyzing an individual kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is to mismic if the performance of the kernel is bounded by tubulation, memory bandwidth analysis Imperform Compute Analysis Imperform Anenory Bandwidth analysis t	the kernel's compu formance of the k	ite utilization is sign ernel is most likely b	ificantly lower that being limited by the	n its memory utilizatio e memory system. Foi	on. These r this kernel the	Select or single in	r highligl Iterval to			
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late	WIDIA Visual Profiler Yiew Window Run Help Image: gpu_data.timeline100.nvprof 0 s 0.1 s 0 s 0.1 s 0 s 0.1 s 0 s 0.1 s 0 penACC Driver API Profiling Overhead 1) Tesla V100-SXM2-16GB 2 Context 1 (CUDA) Y MemCpy (HtoD) Y MemCpy (DtoH) Y MemCpy (D	the kernel's compu formance of the k n is the bandwidth	ite utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. Foi	on. These r this kernel the	Select o single in properti	r highligł iterval to es			
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv	ncy Bound idual kernel is t	to ^	For device "Tesla" utilization levels in limiting factor in	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu formance of the k n is the bandwidth	ite utilization is sign ernel is most likely b of the Device memo	ificantly lower tha being limited by the ory.	n its memory utilizatic e memory system. For	on. These r this kernel the	Select o single in properti	r highligi iterval to es
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth.	Viola visual Profiler View Window Run Help Image: gpu_data.timeline100.nvprof Image: gpu_data.	the kernel's compu rformance of the k n is the bandwidth	ite utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. Foi	on. These r this kernel the	Select o single in properti	r highligl iterval to es			
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Later The first step in analyzing an individetermine if the performance of the computation, memory bandwidth, latency. The results at right indica kernel imain 123 gnut is most like	e_gpu_data.timeline100.nvprof \(\lambda\) e_gpu_data.timeline100.nvprof \(\lambda\) sss "run" (176968) read 294448 OpenACC Driver API ofiling Overhead dila V100-SXM2-16GB rntext 1 (CUDA) Y MemCpy (HtoD) Y MemCpy (HtoD) Y MemCpy (DtoH) Sis \(\lambda\) imance-Critical Kernels ute, Bandwidth, or Latency Bound step in analyzing an individual kernel is to eif the performance of the kernel is bounded by tion, memory bandwidth, or instruction/memory The results at right indicate that the performance of nain_123_gpu" is most likely limited by memory th.	For device "Tesla utilization levels in limiting factor in 100% 90%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu rformance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. Foi	on. These this kernel the	Select o single in properti	r highligl iterval to es	
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth.	ncy Bound idual kernel is t e kernel is bou or instruction/i te that the perf ely limited by me	to Inded by Imemory formance of emory	For device "Tesla" utilization levels in limiting factor in 100% 90% 80%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu formance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. Foi	on. These this kernel the	Select o single in properti	r highligi iterval to es
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Later The first step in analyzing an individermine if the performance of the computation, memory bandwidth, latency. The results at right indicates kernel "main_123_gpu" is most liker bandwidth.	ncy Bound idual kernel is t be kernel is bou or instruction/ te that the perf ly limited by me	to Aunded by memory formance of emory	For device "Tesla utilization levels in limiting factor in 90% 80% 70%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu rformance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. Foi	on. These r this kernel the	Select o single in properti	r highligl iterval to es
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Later The first step in analyzing an individe determine if the performance of the computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most liker bandwidth.	ncy Bound idual kernel is t ne kernel is bou or instruction/ te that the perf ly limited by me indwidth Analy	to unded by formance of emory rsis	For device "Tesla" utilization levels in limiting factor in 90% 80% 70% 50% 60%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu rformance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. For	on. These this kernel the goperations	Select o single in properti	r highligl iterval to es
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth.	ncy Bound idual kernel is t e kernel is bou or instruction/i te that the perf ely limited by me indwidth Analy: rthis kernel is memo th analysis to determ	to inded by formance of emory /sis ory bandwidth mine how it is	For device "Tesla" utilization levels in limiting factor in 90% 80% 70% 60% 50%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu formance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. For Memor Control	on. These r this kernel the g operations -flow operations tic operations	Select o single in properti	r highligl iterval to es
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Later The first step in analyzing an individermine if the performance of the computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth. Perform Memory Band The most likely bottleneck to performance to so you should first perform memory bandwid limiting performance.	DIA Visual Profiler ew Window Run Help 	For device "Tesla" utilization levels in limiting factor in 90% 80% 70% 60% 50% 40%	V100-SXM2-16GB" ndicate that the per the memory systen	the kernel's compu rformance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. For Memor Control Arithme Memor	n. These r this kernel the g operations -flow operations etic operations g (Device)	Select o single in properti	r highligl terval to es	
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth.	/IDIA Visual Profiler /jew Window Run Help igle_gpu_data.timeline100.nvprof % 0's 0.1 s 0.2 s 0.3 s cess 'run' (176968) Thread 294448 OpenACC Driver API Profiling Overhead Tesla V100-SXM2-16GB Context 1 (CUDA) 'w MemCpy (HtoD) 'w MemCpy (DtoH) 'w Memcpy is most likely limited by memory with. 'f he performance of the kernel is bounded by trainon memory bandwidth, or instruction/memory y. The results at right indicate that the performance of memory bandwidth, or instruction/memory y. The results at right indicate that the performance of memory bandwidth analysis to determine how it is perform memory bandwidth analysis to determine how it is perform memory bandwidth analysis to determine how it is perform memory latency are likely not the perimary and control to perimary and conthis bend but to perimary and control be per	the kernel's compu formance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. For Memor Control Arithme Memor	on. These r this kernel the g operations -flow operations tic operations g (Device)	Select o single in properti	r highligl terval to es			
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth. Perform Memory Ba The most likely bottleneck to performance to so you should first perform memory bandwid limiting performance. Perform Comp	VIDIA Visual Profiler View Window Run Help	the kernel's compu formance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the	n its memory utilizatio e memory system. For Memor Control Arithme Memor	on. These r this kernel the y operations -flow operations tic operations y (Device)	Select o single in properti	r highligl iterval to es			
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Late The first step in analyzing an indiv determine if the performance of th computation, memory bandwidth, latency. The results at right indica kernel "main_123_gpu" is most like bandwidth. Perform Memory Ba The most likely bottleneck to performance to so you should first perform memory bandwid imiting performance. Perform Comp Compute and instruction and memory latence	WDIA Visual Profiler Yiew Window Run Help Image: gpu_data.timeline100.nvprof Ingle_gpu_data.timeline100.nvprof Image: gpu_data.timeline100.nvprof	V100-SXM2-16GB" ndicate that the per the memory system	the kernel's compu formance of the k n is the bandwidth	rte utilization is sign ernel is most likely b of the Device memo	ificantly lower that being limited by the ory.	n its memory utilizatio e memory system. For Memor Control Arithme Memor	on. These r this kernel the g operations -flow operations etic operations g (Device)	Select o single in properti	r highligl terval to es		

This box will estimate the performance limiter of your kernel

Click here to dive deeper on that performance limiter

CAK RIDGE

Visual Profiler – Guided Analysis – Bandwidth Bound

rile view window Kun He	ew <u>Window Run Help</u> 										
	Image: Second				Δ.T						
*single_gpu_data.timeline100.n	Image: Second system Image: Second system Image: Second system Ima										
	Intervention Intervention Interventinter Intervention <tr< td=""><td>0.2 s</td><td>0.3 s</td><td>0.4 s</td><td>0.5 s</td><td>0.6 s</td><td>0.7 s</td><td>0.8 s</td><td>0.9 s</td><td></td></tr<>		0.2 s	0.3 s	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s	
Process "run" (176968)	Igle_gpu_data.timeline100.nvprof ⊠ 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s										
Thread 294448											
└ OpenACC											
🔚 Analysis 🛛 🔤 GPU Details (S	cess "run" (176968) Thread 294448 OpenACC alysis 🕸 📷 GPU Details (Summary) ① ① ①A Application Analysis formance-Critical Kernels npute, Bandwidth, or Latency Bound		# OpenACC Details	📻 OpenMP Deta	ils 📃 Console 🗔	Settings			<u>\.</u>	D Prop) X
E E 🔂 🛄 Exp	port PDF Repor	rt	Results								
1 CUDA Application Analysis			💧 Global Mem	ory Alignment and	d Access Pattern					^	
			Memory bandwi	dth is used most ef	ficiently when each	global memory loa	ad and store has pro	per alignment and	access pattern. The ar	Select or	high
2. Performance-Critical Kernels			per assembly ins	truction.						single int	terval or
3. Compute, Bandwidth, or Later	ncy Bound		Optimization: Sel	lect each entry belo or each load or stor	w to open the sourc e improve the alian	e code to a global lo ment and access no	oad or store within t attern of the memor	he kernel with an ir v access.	nefficient alignment or	propertie	
4. Memory Bandwidth			access partern r		e unprore ine dugin	ineni ana access pa	internet, the memory	decessi			
Memory bandwidth limits the perfo	ormance of a ke	ernel when	✓ Line / File p	oisson2d.c - \gpfs\	wolf\gen110\scrate	h\j2k\nvidia profile	ers\jacobi\3 single	qpu data			
one or more memories in the GPU o	annot provide	data at the	126 G	lobal Load L2 Trans	sactions/Access = 9	, Ideal Transactions	/Access = 8 [47121	94 L2 transactions f	or 524032 total executi		
the kernel is limited by the bandwi	dth available to	the device	126 G	lobal Load L2 Trans	sactions/Access = 9	, Ideal Transactions	/Access = 8 [47121	94 L2 transactions f	or 524032 total executi		
memory.			126 G	lobal Load L2 Trans	sactions/Access = 9	, Ideal Transactions	/Access = 8 [47121	94 L2 transactions f	or 524032 total executi		
JL Rerun A	nalysis		126 G	lobal Store L2 Trans	sactions/Access = 9	, Ideal Transactions	/Access = 8 [47121	94 L2 transactions f	or 524032 total executi		
If you modify the kernel you need to rerun you	rapplication to upda	ato thic a makeic	120 G	lobal Load L2 Trans	sactions/Access = 9 sactions/Access = 9	Ideal Transactions	/Access = 8 [4/121 /Δccess = 8 [47121	94 L2 transactions f 94 L2 transactions f	or 524032 total executi or 524032 total executi		
in you moonly the kenter you need to renarryou		ite ina analysia.			actions, Access = 5	, lacar mansaccions,	140000 - 014100		or service total executi		
			GPU Utilizat	tion is Limited By I	Memory Bandwidt	n al haadh is haaraal ƙasa			in The table also also		
			utilization of eac is potentially lim	ble shows the mem h memory type rela ited by the bandwid	ative to the maximu ative to the maximu dth available from o	d by this kernel for i m throughput supp one or more of the r	the various types of ported by the memo memories on the de	r memory on the de ory. The results sho evice.	w that the kernel's per		
			Optimization: Try	the following opti	mizations for the me	mory with high bar	ndwidth utilization.				
			Shared 12 Car	d Memory - If possii che - Alian and blo	ble use 64-bit acces ck kernel data to m	ses to shared memo	ry and 8-byte bank iiciency	mode to achieved i	2x throughput.		
			Unifie	d Cache - Reallocat	te texture data to sh	ared or global men	nory. Resolve alignn	nent and access pat	tern issues for global		
			loads and stores.		-1			-4	-		
			Device	e memory - Kesolve	augnment and acc	ess pattern issues fo	or global loads and	stores.			

This is the final set of suggestions for this kernel.

CAK RIDGE National Laboratory

Visual Profiler – Guided Analysis – Latency Bound

Low Compute & Memory utilization points to being latency bound.

Now a latency analysis is suggested

Visual Profiler – Guided Analysis – Latency Bound

🕵 *single gnu data timeline100 r	r Sun Help intelloOn.ppt 02 intelloOn.ppt 02										
 Single_gpa_adatationerroom 	0 s	0.1 s	0.2 s	0.3 s	0.4 s	0.5 s	0.6 s	0.7 s	0.8 s	0.9 s	
Process "run" (176968)				· · · ·	I	· · ·	I				
Thread 294448											
└ OpenACC											
L Driver API											
Profiling Overhead											
[0] Tesla V100-SXM2-16GB											
Context 1 (CUDA)											
- Y MemCpy (HtoD)											
1. CUDA Application Analysis	port PDF Repo	rt	Besults Grid Size Too	o Small To Hide Co	mpute And Memo	ry Latency	a latency Typically	the kernel arid rize m	wrt he large enough	Select or bigh	ыі
2. Performance-Critical Kernels			to fill the GPU wi	th multiple "waves"	of blocks to hide me	n theoretical occup	ancy, device "Tesla	V100-SXM2-16GB" c	an simultaneously	single interva	al t
3. Compute, Bandwidth, or Late	ncy Bound		execute 8 blocks latency. If the ker	on each of the 80 S rnel is executing co	Ms, so the kernel n ncurrently with oth	nay need to execute er kernels then few	e a multiple of 640 b er blocks will be req	locks to hide the con juired because the ke	npute and memory rnel is sharing the	properties	
4. Instruction and Memory Later	Profile dow Bun Help atatimeline100.nvprof S2 0 s 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 176960 446 176960 446 176960 446 176960 446 176960 446 176960 446 176960 446 176960 446 1769600 1769600 1769600 1769600 1769600 1769600 1769600 1769600 1769600 1769600 1769600 1769600			2							
Instruction and memory latency lim kernel when the GPU does not hav busy. The results at right indicate t have enough work because the ke enough blocks.	it the performa re enough work hat the GPU do rnel does not e	nce of a A k to keep bes not xecute	Optimization: Inc	rease the number o	† blocks executed b	y the kernel.			More		
🖳 Examine Oc	cupancy										
Occupancy is a measure of how many warps to relative to the maximum number of warps su occupancy provides an upper bound while ach	A Visual Profiler v Window Run Help	e on the GPU, Theoretical dicates the lay not be eccrupancy									
kernel's actual occupancy. For this kernel, exai useful until you modify the kernel to execute r analysis assumes there are enough blocks to f	nore blocks because fill the GPU.	occupancy									

The kernel doesn't do enough work for the GPU.

CAK RIDGE

Visual Profiler – Guided Analysis – Latency Bound

	, =_ ©, + <u>+</u> (=		K 5 P 👌 -							
*single_gpu_data.timeline100.nv	/prof 🚺 *vec_add_cud	a.timeline.nvprof 🖾								
	0 s 0.05 s	0.1 s	0.15 s 0.	2 s (0.25 s	0.3 s	0.35 s	0.4 s	0.	45 s
Process "run" (2129)		•					•	·		
 Thread 288400 										
- Runtime API										
L Driver API										
Profiling Overhead									1	
[0] Tesla V100-SXM2-16GB										
Context 1 (CUDA)										
└ ▼ MemCpv (HtoD)										
MemCov (DtoH)										
🗔 Analysis 🛛 🧱 GPU Details (S	ummary) 🔠 CPU Details [🕡 OpenACC Details [🖥 OpenMP Details 🛛 🖳 C	onsole 🔚 Settin	igs			 '		Prop
📃 🗄 🗘 🛛 🛄 Exp	ort PDF Report	Results								
		i Osamana la N							· ^	
1. UUUA Application Analysis		1 Occupancy is in	lot Limiting Kernel Ferr	ormance						add_vecto
		The kernel's block s	ize, register usage, and sł	ormance nared memory usa	age allow it to fu	lly utilize all wa	rps on the GPU.	More.		add_vecto
2. Performance-Critical Kernels		The kernel's block s	ize, register usage, and sł Achieved	nared memory usa	age allow it to fu	Ily utilize all wa Grid Size: [40	rps on the GPU. 096,1,1] (4096 block	More. s)Block Size: [256,		add_vecto Queue Submi
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latene	cy Bound	The kernel's block s Variable Occupancy Per SM	ize, register usage, and sh	nared memory usa	age allow it to fu Device Limit	Ily utilize all wa Grid Size: [40	rps on the GPU. 096,1,1] (4096 block	<u>More.</u> ss)Block Size: [256,	<u></u> 1	add_vecto Queue Submi Start
CODA Application Analysis A Performance-Critical Kernels Compute, Bandwidth, or Latence Instruction and Memory Latence	cy Bound	The kernel's block s Variable Occupancy Per SM	ize, register usage, and sh	nared memory usa	age allow it to fu Device Limit	Ily utilize all wa Grid Size: [40	rps on the GPU. 096,1,1] (4096 block	More. s)Block Size: [256,	<u>"</u> 1	add_vecto Queue Submi Start End
CODA Application Analysis 2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latence 4. Instruction and Memory Latence	cy Bound cy	The kernel's block s Variable Occupancy Per SM Active Blocks	ize, register usage, and si Achieved	arred memory usa	age allow it to fu Device Limit 32	Ily utilize all wa Grid Size: [40	rps on the GPU. 096,1,1] (4096 block	More. s)Block Size: [256, 24 28 32	<u>.</u> 1	Add_vector Queue Submi Start End Durati
CODA Application Analysis 2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latence 4. Instruction and Memory Latence Instruction and memory latency limit kernel when the or U does not have	cy Bound Cy t the performance of a ^ enough work to keep	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps	ize, register usage, and sk Achieved	arred memory usa	age allow it to fu Device Limit 32 64	Ily utilize all wa	rps on the GPU. 096,1,1] (4096 block 8 12 16 20	More. ss)Block Size: [256, 24 28 32	<u></u> 1	Add_vector Queue Submi Start End Duratii Stream Grid Si
CODA Application Analysis 2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latend 4. Instruction and Memory Latend Instruction and memory latency limit kernel when the orth does not have busy. The performance of latency lim be improved by increasing occurany	cy Bound cy t the performance of a e enough work to keep aited kernels can often ov. Oromency is a	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps	ize, register usage, and sh Achieved	Theoretical 8 64 2010	age allow it to fu Device Limit 32 64	Ily utilize all wa Grid Size: [40 0 4 0 9	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36	More. ss)Block Size: [256, 24 28 32 45 54 664		add_vecto Queue Submi Start End Durati Strean Grid Si Block
CODA Application Analysis C. Performance-Critical Kernels Compute, Bandwidth, or Latence Instruction and Memory Latence Instruction and memory latency limit kernel when the ore does not have busy. The performance of latency lim be improved by increasing occupance measure of how many warps the ker	cy Bound cy t the performance of a enough work to keep eited kernels can often cy. Occopency is a rnel has active on the	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads	ize, register usage, and si Achieved	Theoretical 8 64 2048	age allow it to fu Device Limit 32 64 2048	Ily utilize all wa Grid Size: [40 0 4 0 9 0 9	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024	More. (s)Block Size: [256, 24 28 32 45 54 664 1536 2048	<u>.</u> 1	add_vecto Queue Submi Start End Durati Strean Grid Si Block
CODA Application Analysis Compute, Bandwidth, or Latend Compute, Bandwidth, or Latend Instruction and Memory Latend Instruction and memory latency limit kernel when the or b does not have busy. The performance of latency lim be improved by increasing occupancy measure of how many warps the ker GPU, relative to the maximum numb the GPU. Theoretical occupancy prov	cy Bound cy t the performance of a : enough work to keep bited kernels can often cy. Occupency is a rnel has active on the er of warps supported by vides an upper bound	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy	Sterner Period ize, register usage, and sh Achieved 53.8 84.1%	ared memory usa Theoretical 8 64 2048 100%	age allow it to fu Device Limit 32 64 2048 100%	Ily utilize all war Grid Size: [40 0 4 0 9 0 4	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024	More. ss)Block Size: [256, 24 28 32 45 54 664 1536 2048		add_vecto Queue Submi Start End Durati Stream Grid Si Block Regist Shareo
CODA Application Analysis 2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latence 4. Instruction and Memory Latence Instruction and memory latency limit kernel when the OFU does not have busy. The performance of latency lim be improved by increasing occupancy measure of how many warps the ker GPU, relative to the maximum numb the GPU. Theoretical occupancy prov while achieved occupancy indicates orcupancy	cy Bound Cy t the performance of a e enough work to keep oited kernels can often cy. Occopency is a rinel has active on the er of warps supported by vides an upper bound the kernel's actual	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy	53.8 84.1%	Theoretical 8 64 2048 100%	age allow it to fu Device Limit 32 64 2048 100%	Ily utilize all war Grid Size: [40 0 4 0 9 0 5 0%	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50%	More. ss)Block Size: [256, 24 28 32 45 54 664 1536 2048 75% 100%		add_vecto Queue Submi Start End Durati Strean Grid Si Block Regist Shareo Launci
CODA Application Analysis C. Performance-Critical Kernels S. Compute, Bandwidth, or Latence A. Instruction and Memory Latence Instruction and memory latency limit kernel when the GPU does not have busy. The performance of latency lim be improved by increasing occupancy measure of how many warps the ker GPU, relative to the maximum numb the GPU. Theoretical occupancy prov while achieved occupancy indicates occupancy.	cy Bound Cy t the performance of a e enough work to keep aited kernels can often cy. Occupency is a rnel has active on the er of warps supported by vides an upper bound the kernel's actual	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy Warps	53.8 84.1%	ared memory usa Theoretical 8 64 2048 100%	age allow it to fu Device Limit 32 64 2048 100%	Ily utilize all wa Grid Size: [40 0 4 0 9 0 9	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50%	More. ss)Block Size: [256, 24 28 32 45 54 664 1536 2048 75% 100%		add_vector Queue Submi Start End Durati Strean Grid Si Block Regist Sharec Launci
CODA Application Analysis C. Performance-Critical Kernels G. Compute, Bandwidth, or Latence A. Instruction and Memory Latency limit kernel when the one does not have busy. The performance of latency limit kernel when the one does not have busy. The performance of latency limit be improved by increasing occupancy measure of how many warps the ker GPU, relative to the maximum numb the GPU. Theoretical occupancy prov while achieved occupancy indicates occupancy. Examine Occu	cy Bound cy t the performance of a enough work to keep aited kernels can often cy. Occopency is a rnel has active on the er of warps supported by vides an upper bound the kernel's actual	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy Warps Threads/Block	53.8 84.1%	ared memory usa Theoretical 8 64 2048 100%	age allow it to fu Device Limit 32 64 2048 100%	Ily utilize all wa Grid Size: [40 0 4 0 9 0 9 0 5 0%	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50%	More. s)Block Size: [256, 24 28 32 45 54 664 1536 2048 75% 100% 768 1024		add_vecto Queue Submi Start End Durati Stream Grid Si Block Regist Shareo Launci ✓ Occup Ac
CODA Application Analysis C. Performance-Critical Kernels Compute, Bandwidth, or Latend Compute, Bandwidth, or Latend Instruction and Memory Latency limit Kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have busy. The performance of latency limit kernel when the or & does not have limit the or & does not have busy. The performance of latency limit the or & does coupancy indicates coupancy	cy Bound Cy t the performance of a enough work to keep aited kernels can often cy. Occupency is a rnel has active on the er of warps supported by vides an upper bound the kernel's actual upancy e kernel has active on the GPU,	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy Warps Threads/Block Warps/Block	Standing Kerner Period	ared memory usa Theoretical 8 64 2048 100% 256 8	age allow it to fu Device Limit 32 64 2048 100% 1024 32	Ily utilize all war Grid Size: [40 0 4 0 9 0 9 0 9 0 9 0 9	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50%	More. (s)Block Size: [256, 24 28 32 45 54 654 1536 2048 75% 100% 75% 100%		add_vector Queue Submi Start End Duratii Stream Grid Si Block Regist Shareo Launci ✓ Occup Ac Th ✓ Shareo
CODA Application Analysis Control Application Analysis Compute, Bandwidth, or Latence S. Compute, Bandwidth, or Latence A. Instruction and Memory Latence Instruction and memory latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the GPU does not have busy. The performance of latency limit kernel when the does not have busy. The performance of latency limit kernel when the maximum number of warps support cupancy provides an upper bound while achieve busy. The performance of latency limit kernel when the maximum number of warps support cupancy limit kernel when the maximum number of	cy Bound Cy t the performance of a e enough work to keep aited kernels can often cy. Occopency is a rnel has active on the er of warps supported by vides an upper bound the kernel's actual upancy e kernel has active on the GPU, poorted by the GPU. Theoretical wed occupancy indicates the	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy Warps Threads/Block Warps/Block	53.8 84.1%	ared memory usa hared memory usa 8 64 2048 100% 	age allow it to fu Device Limit 32 64 2048 100% 	Ily utilize all wat Grid Size: [40 0 4 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50% 256 512 8 12 16 20	More. ss)Block Size: [256, 24 28 32 45 54 664 1536 2048 75% 100% 768 1024 24 28 32		add_vector Queue Submi Start End Duratii Stream Grid Si Block Regist Shared Launci V Occup Ac Th V Shared Shared
CODA Application Analysis C. Performance-Critical Kernels G. Compute, Bandwidth, or Latence A. Instruction and Memory Latence Instruction and memory latency limit kernel when the orth does not have busy. The performance of latency lim be improved by increasing occupancy measure of how many warps the ker GPU, relative to the maximum numbe the GPU. Theoretical occupancy indicates occupancy. Examine Occu Occupancy is a measure of how many warps th relative to the maximum number of warps sup occupancy provides an upper bound while achieved kernel's actual occupancy.	cy Bound Cy t the performance of a e enough work to keep aited kernels can often cy. Occupency is a rnel has active on the er of warps supported by vides an upper bound the kernel's actual upancy e kernel has active on the GPU, ported by the GPU. Theoretical eved occupancy indicates the	The kernel's block s Variable Occupancy Per SM Active Blocks Active Warps Active Threads Occupancy Warps Threads/Block Warps/Block Block Limit	53.8 84.1%	ared memory usa Theoretical 8 64 2048 100% 256 8 8 8	age allow it to fu Device Limit 32 64 2048 100% 1024 32 32	Ily utilize all wa Grid Size: [40 0 4 0 4 0 9 0 9 0 6 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	rps on the GPU. 096,1,1] (4096 block 8 12 16 20 18 27 36 512 1024 25% 50% 256 512 8 12 16 20 8 12 16 20 8 12 16 20	More. ss)Block Size: [256, 24 28 32 45 54 664 1536 2048 75% 100% 758 1024 24 28 32 24 28 32		add_vector Queue Submi Start End Durati Strean Grid Si Block Regist Shareo Launci V Occup Ac Th Shareo Sh Sh Sh

In other cases an occupancy analysis may be performed.

CAK RIDGE National Laboratory

Visual Profiler – Guided Analysis – Compute Bound

WNDA Visual Profile WNDA Visual Profile Withdow Bunk Left Withdow Bunk Left Process TMR Bank 0* (100 T) Process TMR Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Withdow Bank 0* (100 T) Process TMR Bank 0* (100 T) Withdow Bank 1* (100 T) Wi												
NUDUA Visual Prefie NUDUA Visual Prefie Numerical Prefix												
WNDUA Visual Profile With visual Prof												
	0 s 0.25 s	0.5 s	0.75 s	1 s	1.25 s	1.5 s	1.75 s	2 s	2.25 s	2.5 s	2.75 s	
Process "MPI Rank 0" (180175)												
 Thread 310560 												
Runtime API												
L Driver API												
 Markers and Ranges 												
L Default Domain												
Profiling Overhead												
[0] Tesla V100-SXM2-16GB												
 Context MPI Rank 0 (CUDA) 												
NVDA Visual Profiler If visual Pr	\	Prop	.ε									
E 🗄 🗘 🛛 🛄 Expor	t PDF Report	Results										
MUDIA Visual Portier Work Mudow Ban Help If Yew Window Ban Help Trat.mol.mot.timeline.0urpert 22 Precess MR Rank 0" (100173)												
1. CODA Application Analysis		1 Kerne		e is bound by	compute					-		
2. Performance-Critical Kernels		For device	e "Tesla V100-S) cate that the pe	KM2-16GB" the erformance of	e kernel's memo the kernel is mo	ory utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte	nigh erva
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latence	Round	For device levels indi	e "Tesla V100-S) cate that the pe	KM2-16GB" the erformance of	e kernel's memo the kernel is mo	ory utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
2. Performance-Critical Kernels 3. Compute, Bandwidth, or Latency The first step in analyzing an individua	Round	For device levels indi	e "Tesla V100-S) cate that the pe	XM2-16GB" the erformance of	e kernel's memo the kernel is mo	ory utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh rva
Soute NVIDA Visual Profile Window Run Bip Imagind intectimation of the service Process MR Pank 01 (160178) 9 0.25 5 0.5 5 0.75 1 3 1.25 1.5 1.75 2 5 2.25 2 Process MR Pank 01 (160178) 9 0.25 5 0.5 5 0.75 1 3 1.25 5 1.5 1.75 2 5 2.25 2 2 Process MR Pank 01 (160178) 9 0.25 5 0.5 9 0.75 1 3 1.25 5 1.5 1.75 2 5 2.25 5 2 Process MR Pank 01 (160178) 9 0.25 5 0.5 9 0.75 1 3 1.25 5 1.5 1.75 2 5 2.25 5 2 Process MR Pank 01 (160178) 9 0.25 5 0.5 9 0.75 1 3 1.25 5 1.5 1.75 2 5 2.25 5 2 Process MR Pank 01 (160178) 9 0.25 5 0.5 9 0.75 1 3 1.25 5 1.5 1.75 1.75 2 5 2.25 5 2 9 0.5 0.5 0.5 0.75 1 3 1.25 5 1.5 1.75 1.75 2 5 2.25 5 2 9 0.5 0.5 0.5 0.75 1.5 1.75 1.75 2 5 2.25 5 2 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	. These utilization	Select or h single inte properties	nigh erva									
NVIDIA Visual Profiler File View Window Run Help **mat_mul_nvtx.timeline.0.nvprof S 0's 0.25's 0.5's 0.75's 1's Process *MPI Rank 0' (180175) • Thread 310560 • Runtime API • Oriver API • Default Domain • Default Domain • Profiling Overhead • Default Domain • Default Domain • Profiling Overhead • Default Rank 0 (CUDA) • Matters and Ranges • Default CUDA • Matters and Ranges • Default Domain • Profiling Overhead • Oriver API • Matters and Ranges • Default Domain • Profiling Overhead • Default CUDA • Matters and Ranges • Default Domain • Profiling Overhead • OpenACC Details @ OpenAPC Details @ • OpenAPC Details @ Op	e kernel's memo the kernel is mo	ory utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva				
CODA Application Analysis Compute, Bandwidth, or Latency The first step in analyzing an individua determine if the performance of the ke computation, memory bandwidth, or i latency. The results at right indicate th kernel "volta_dgemm_64x64_nn" is mos compute.	Round I kernel is to rrnel is bounded by nstruction/memory at the performance of it likely limited by	For device levels indi	"Tesla V100-S) cate that the pe	KM2-16GB" the	e kernel's memo	ny utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
CODA Application Analysis Compute, Bandwidth, or Latency The first step in analyzing an individua determine if the performance of the ke computation, memory bandwidth, or i latency. The results at right indicate th kernel "volta_dgemm_64x64_nn" is more compute.	Pound I kernel is to ernel is bounded by natruction/memory hat the performance of it likely limited by	For device levels indi	2 "Tesla V100-S) cate that the pe	KM2-16GB" the	e kernel's memo	ny utilization is ist likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
CODA Application Analysis Constant	Bound I kernel is to rrnel is bounded by nstruction/memory at the performance of t likely limited by Analysis	For device levels indi	"Tesla V100-S) cate that the pe 90% 80% 70% 60% 50%	KM2-16GB" the	e kernel's memo the kernel is mo	ory utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
CODA Application Analysis Constant Constant Analysis Constant Analysis Constant Analysis	Round I kernel is to rnel is bounded by nstruction/memory lat the performance of it likely limited by Analysis kernel is compute so you a how it is limiting	For device levels indi	"Tesla V100-S) cate that the pe 00% 90% 80% 70% 60% 50% 40%	KM2-16GB" the	e kernel's memo the kernel is mo	ny utilization is ist likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
CODA Application Analysis Concern and a second analysis Compute, Bandwidth, or Latency The first step in analyzing an individual determine if the performance of the key computation, memory bandwidth, or i latency. The results at right indicate the kernel "volta_dgemm_64x64_nn" is most compute. Perform Compute The most likely bottleneck to performance for this should first perform compute analysis to determine performance.	Pound I kernel is to rmel is bounded by nstruction/memory at the performance of it likely limited by Analysis emel is compute so you e how it is limiting	For device levels indi	* Tesla V100-S) cate that the period 90% 80% 70% 60% 50% 40% 30%	KM2-16GB" the	e kernel's memo the kernel is mo	ny utilization is ist likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh erva
CODA Application Analysis Constant	Round I kernel is to rrnel is bounded by nstruction/memory hat the performance of the tikely limited by Analysis eemel is compute so you how it is limiting	For device levels indi	2 "Tesla V100-S) cate that the per- 90% 80% 70% 60% 50% 40% 30% 20%	KM2-16GB" the	e kernel's memo the kernel is mo	ny utilization is	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	. These utilization	Select or h single inte properties	nigh rrva
CODE Application Analysis Construct A second analysis Compute, Bandwidth, or Latency The first step in analyzing an individual determine if the performance of the key computation, memory bandwidth, or i latency. The results at right indicate the kernel "volta_dgemm_64x64_nn" is more compute. Perform Compute The most likely bottleneck to performance for this should first perform compute analysis to determine performance. Perform Latency A Perform Memory Bandwidth	VIDIA Visual Profiler View Window Run Help Imat_mul_nvtx.timeline.0.nvprof Imat_mul_nvtx.timprof Imat_mul_nvtx.timeline.0.nvprof <td>For device levels indi</td> <td>"Tesla V100-S) cate that the person of the second secon</td> <td>KM2-16GB" the</td> <td>e kernel's memo the kernel is mo</td> <td>ny utilization is ost likely being</td> <td>significantly low limited by comp</td> <td>ver than its con utation on the</td> <td>npute utilization. SMs.</td> <td>These utilization</td> <td>Select or h single inte properties</td> <td>nigh erva</td>	For device levels indi	"Tesla V100-S) cate that the person of the second secon	KM2-16GB" the	e kernel's memo the kernel is mo	ny utilization is ost likely being	significantly low limited by comp	ver than its con utation on the	npute utilization. SMs.	These utilization	Select or h single inte properties	nigh erva
NUDDA Visual Profiler I W Monda Visual Profiler I Mark Control Profiler I Process MPI Rank Of (10173) I Process MPI Rank Of (10174)												

High compute utilization indicates the kernel is compute bound.

Now a compute analysis is suggested

CAK RIDGE

Visual Profiler – Guided Analysis – Compute Bound

	=	u 🔍 🖌 🖯	Q 🔍 🖃	F 🔨 📕	📮 📇 📩	•									
*mat_mul_nvtx.timeline.0.n	nvprof ⊠													-	7
	0 s	0.25 s	0.5 s	0.75 s	1 s	1.25 s	1.5 s	1.75 s	2 s	2.25 s	2.5 s	2.7	5 s	3 s	
Process "MPI Rank 0" (18017	75)														
Thread 310560															
Runtime API															_
🔚 Analysis 🖾 📑 GPU Deta	ails (Summary)	E CPU Details	s 🗇 OpenACC	C Details 🕅 🗐 Op	enMP Details	🚽 Console 🗖	Settings				\ [_]		Prop	ΞĽ.	_
	Export PDF Re	eport	Results												
1. CUDA Application Analysis	;		💧 GPU	Utilization Is L	imited By Fund	tion Unit Usag									
2. Performance-Critical Kern	IA Visual Profiler w Window Run Help mul_nvtx.timeline.0.nvprof o s 0.2 s *MPI Rank 0° (180175) ead 310560 Runtime API sis		Different is over-u	t types of instruc used by the instru	tions are execu uctions execute	ted on different d by the kernel.	tunction units The following	within each SM. results show that	. Performance car t the kernel's perf	n be limited if formance is po	a function unit stentially		Select or hi single inter	ghlight val to s	1
3. Compute, Bandwidth, or L	atency Bound		limited b	by overuse of the	e following fun	ction units: Dou	ble.	stant menors					properties		
4 C			_	Texture - Load	and store inst	ructions for loca	snared and cor I, global, and t	exture memory.							
4. Compute Resources				Half - Half-pr	ecision floating	-point arithmet	c instructions.	tic instructions							
GPU compute resources limit the those resources are insufficient	he performance t or poorly utili:	of a kernel whe zed. Compute	n	Double - Dou	ble-precision fl	oating-point ari	hmetic instruc	tions.							
resources are used most efficie overuse a function unit. The re-	ently when instr	uctions do not		Special - Spec	ial arithmetic in	nstructions such	as sin, cos, po	pc, etc. Ic							
compute performance may be l	limited by overu	ise of a function		Control-riow	- Direct and inc	meet branches,	jumps, and ca	15,							
L Show Kernel Prom	ie - Instruction	Execution													
The kernel profile shows the execution of threads for each source and assembly lin	ount, inactive thread	s, and predicated			Llink										
can pinpoint portions of your kernel that a	are making inefficier	nt use of compute			riign										
				evel											
ाम् Ren	un Analysis			u L a											
If you modify the kernel you need to reru	in your application to	update this a nalysis.		zati	IMIED										
				3											
					Low		_		_						

"Poor Man's" Guided Analysis

- Sometimes you can get enough information from a simple nvprof run to get you started.
- Utilization will be shown as a scale from 1 (Low) to 10 (Max)

\$ jsrun -n1 -c1 -a	g1 -a1 nvprof -m dram_utilization,12_v	tilization,double_precision_fu_utilization,ac	chieved_occup	ancy ./redun	dant_mm	
2048 100						
==13250== NVPROF is profiling process 13250, command: ./redundant_mm 2048 100			Ideally, something will be "High" or "Max". If everything is "Low",			
==13250== Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.						
==13250== Profiling application: ./redundant_mm 2048 100						
(N = 2048) Max Total Time: 10.532436 Max GPU Time: 8.349185				and check occupancy.		
Rank 000, HWThread 002, GPU 0, Node h49n16 - Total Time: 10.532436 GPU Time: 8.349185 🛛 🛛 🔾						
==13250== Profili	ng result:			1		
==13250== Metric :	result:					
Invocations	Metric Name	Metric Description	Min	Max	Avg	
Device "Tesla V100	0-SXM2-16GB (0)"			L L		
Kernel: volta	_dgemm_64x64_nn					
100	dram_utilization	Device Memory Utilization	Low (1)	Low (2)	Low (1)	
100	12_utilization	L2 Cache Utilization	Low (2)	Low (2)	Low (2)	
100	double_precision_fu_utilization	Double-Precision Function Unit Utilization	Max (10)	Max (10)	Max (10)	
100	achieved occupancy	Achieved Occupancy	0.114002	0.120720	0.118229	

Summary

- How to generate text and visual output using the NVIDIA profilers
- The workflow for using the NVIDIA profilers on Summit
 - Generate visual output remotely
 - Scp visual output to local machine
 - Explore using NVIDIA Visual Profiler on local machine
- A simple example of how the text+visual profiles might be used when porting an application to run on GPUs
- How to profile multiple MPI ranks (when not too many!)
- How to insert simple annotations into visual profiles using NVTX
- How to interpret Unified Memory results in the visual profiler
- How to perform remote kernel analysis

