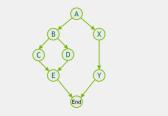
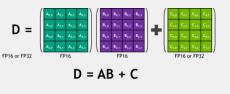

## **HIGHLIGHTS OF CUDA 10 FOR SUMMIT**

March 27, 2019 | OLCF User Conference Call Steve Abbott

## **INTRODUCING CUDA 10.0**


#### **TURING AND NEW SYSTEMS**


New GPU Architecture, Tensor Cores, NVSwitch Fabric



#### **CUDA PLATFORM**

CUDA Graphs, Vulkan & DX12 Interop, Warp Matrix



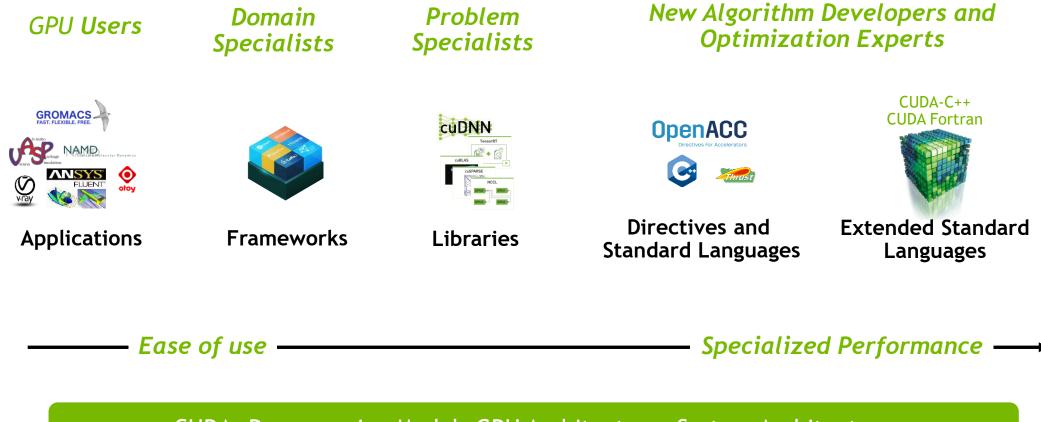


#### **LIBRARIES**

GPU-accelerated hybrid JPEG decoding, Symmetric Eigenvalue Solvers, FFT Scaling



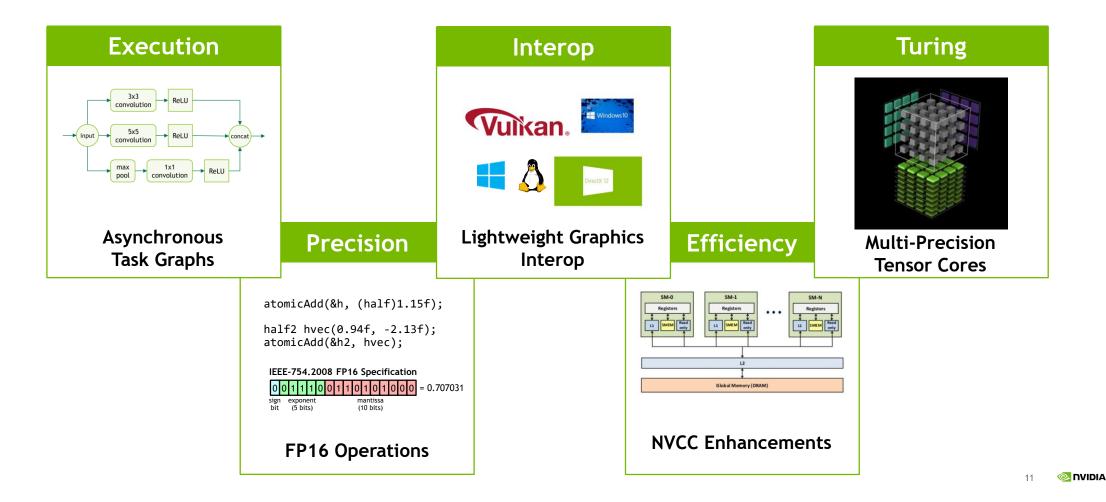
#### **DEVELOPER TOOLS**


New Nsight Products - Nsight Systems and Nsight Compute

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADD MARKING.       |               |                |                    |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------|--------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |               |                |                    |       |
| - Cartin-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And Personnel Name |               | and the second | <br>and the second |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and a constant     |               | 100,000        |                    | 81,01 |
| 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |               |                |                    |       |
| - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| Other Designment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| Color Res. of Street, Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| The BELCHUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | of a lower of |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                |                    |       |
| LANSING STREET, STREET |                    |               |                |                    |       |

|      | s                                 | ource Live Registers | Sampling Data (All) | Sampling Data (No Issue) |
|------|-----------------------------------|----------------------|---------------------|--------------------------|
| 01PT | SHFL.IDX PT, RZ, RZ, RZ, RZ;      | 0                    | 223                 | (                        |
|      | MOV R1, c[0x0][0x28];             | 1                    | 13                  | 44                       |
|      | S2R R0, SR_CTAID.X;               | 2                    | 143                 | 75                       |
|      | S2R R2, SR_TID.X;                 | 3                    | 0                   | 34                       |
|      | IMAD R0, R0, c[0x0][0x0], R2;     | 3                    | 599                 | 94                       |
|      | ISETP.GE.AND P0, PT, R0, c[0x0][0 | x170] 2              | 125                 | 26                       |
| 898  | EXIT;                             | 2                    | 259                 | 84                       |
|      | MOV R2, R0;                       | 3                    | 386                 | 25                       |
| @!PT | SHFL.IDX PT, RZ, RZ, RZ;          | 2                    | 0                   | 6                        |
|      | MOV 84, 0x4;                      | 3                    | e                   | (                        |
|      | IMAD.WIDE R4, R2, R4, c[ex0][0x16 | e]; 4                | 0                   | (                        |
|      | LDG.E.SYS R3, [R4];               | 3                    | 0                   | (                        |
|      | BSSY 80, 0xb00976780;             | 3                    | 0                   | (                        |
|      | SHF.R.532.HI R0, RZ, 0x1f, R2;    | 4                    | •                   |                          |

2


## CUDA DEVELOPMENT ECOSYSTEM



CUDA: Programming Model, GPU Architecture, System Architecture

# PROGRAMMING MODEL

## **NEW PROGRAMMING MODEL FEATURES**



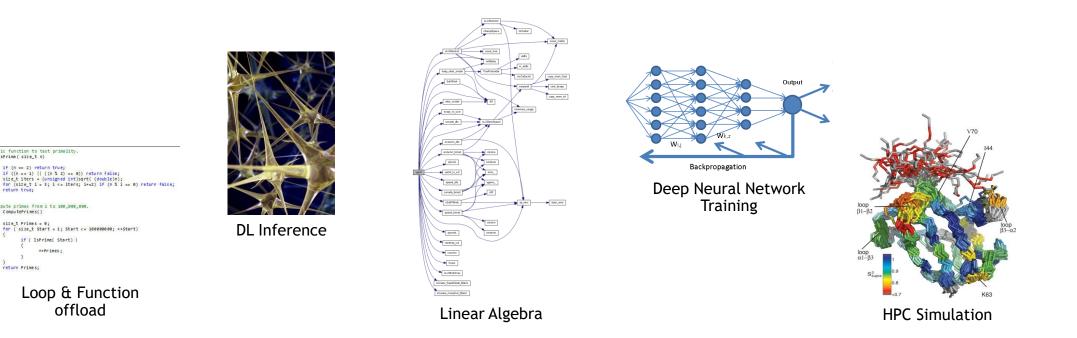
## **ASYNCHRONOUS TASK GRAPHS**

## **Execution Optimization When Workflow is Known Up-Front**

// Basic function to test primality. bool IsPrime( size\_t n)

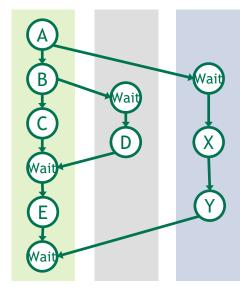
return true;

return Primes:


if (n == 2) return true:

// Compute primes from 1 to 100.000.000. ize\_t ComputePrimes() size t Primes = 0;

> if ( IsPrime( Start) ) ++Primes


> > offload

if ((n == 1) || ((n % 2) == 0)) return false;



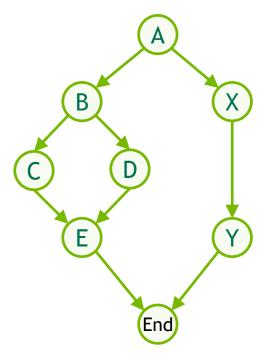
## ALL CUDA WORK FORMS A GRAPH

#### **CUDA Work in Streams**



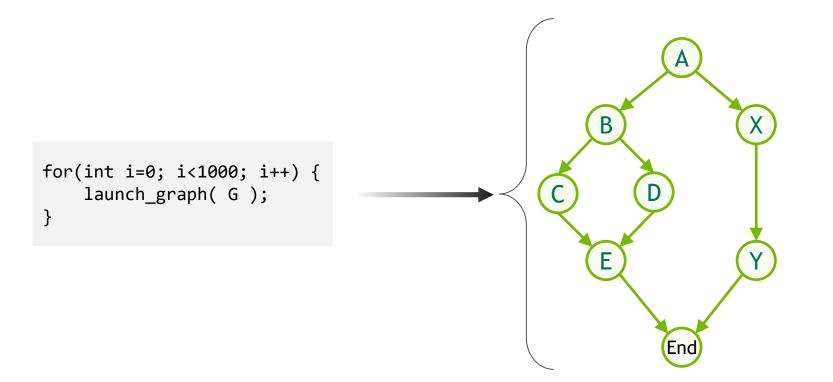
## ALL CUDA WORK FORMS A GRAPH

# CUDA Work in StreamsGraph of DependenciesImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can be mapped to a graphImage: Cup of the stream can


## **DEFINITION OF A CUDA GRAPH**

## Graph Nodes Are Not Just Kernel Launches

Sequence of operations, connected by dependencies.

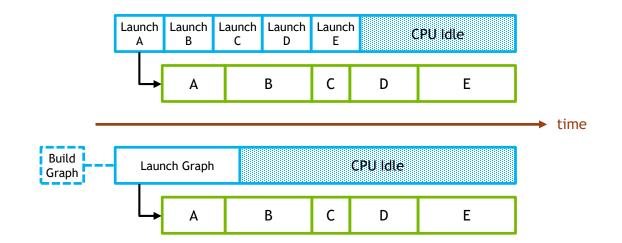

Operations are one of:

| Kernel Launch     | CUDA kernel running on GPU |
|-------------------|----------------------------|
| CPU Function Call | Callback function on CPU   |
| Memcopy/Memset    | GPU data management        |
| Sub-Graph         | Graphs are hierarchical    |



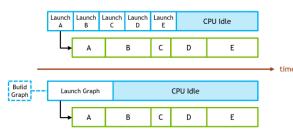
## **NEW EXECUTION MECHANISM**

Graphs Can Be Generated Once Then Launched Repeatedly



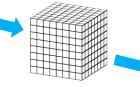

## **EXECUTION OPTIMIZATIONS**

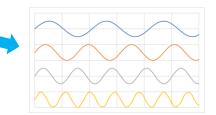
#### Latency & Overhead Reductions


Launch latencies:

- CUDA 10.0 takes at least 2.2us CPU time to launch each CUDA kernel on Linux
- Pre-defined graph allows launch of any number of kernels in one single operation




## **PERFORMANCE IMPACT**


## **Optimizations for Short-Runtime Operations**

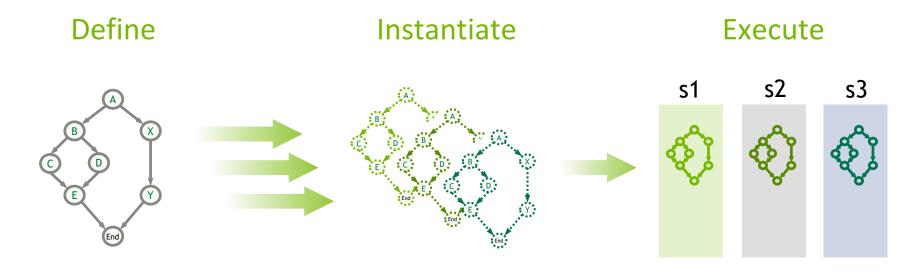


CPU launch time improvements








Example: Small 3D FFT

**25% end-to-end** improvement for 32<sup>3</sup> 3D-FFT (16us with stream launch, 12us with graph launch)

#### NOTE: Performance impact is workload-dependent

Benefits especially short-running kernels, where overheads account for more runtime

## THREE-STAGE EXECUTION MODEL



#### Single Graph "Template"

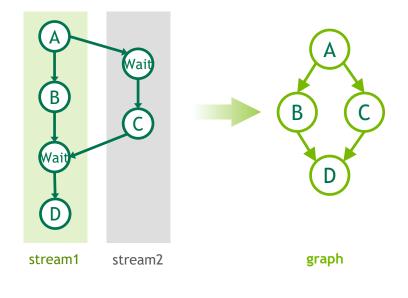
Created in host code or built up from libraries

#### Multiple "Executable Graphs"

Snapshot of template Sets up & initializes GPU execution structures (create once, run many times)

#### Executable Graphs Running in CUDA Streams

Concurrency in graph is not limited by stream


# CONVERT CUDA STREAM INTO A GRAPH

Construct a graph from normal CUDA stream syntax

// Start by initating stream capture
cudaStreamBeginCapture(&stream1, cudaStreamCaptureModeGlobal);

```
// Build stream work as usual
A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1);
B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1);
C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(stream1, e2);
D<<< ..., stream1 >>>();
```

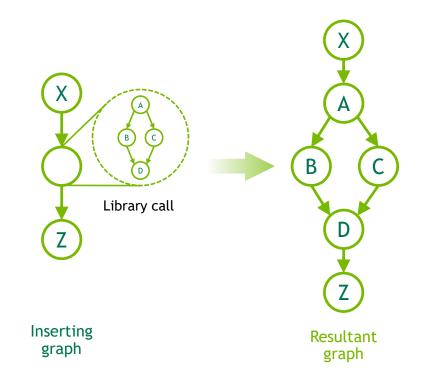
// Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);



## CONVERT CUDA STREAM INTO A GRAPH Construct a graph from normal CUDA stream syntax

// Start by initating stream capture cudaStreamBeginCapture(&stream1, cudaStreamCaptureModeGlobal); // Build stream work as usual A<<< ..., stream1 >>>(); Wai Capture follows cudaEventRecord(e1, stream1); inter-stream dependencies B<<< .... stroom1 >>>(). to create forks & joins cudaStreamWaitEvent(stream2, e1); Wait C<<< ..., Streamz >>>(); cudaEventRecord(e2, stream2); cudaStreamWaitEvent(stream1, e2); D<<< ..., stream1 >>>(); graph stream1 stream2

// Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);


## **CAPTURE EXTERNAL WORK**

Stream Capture Continues Into Library Calls

```
// Start by initating stream capture
cudaStreamBeginCapture(&stream, cudaStreamCaptureModeGlobal);
```

```
// Captures my kernel launches, recurse into library calls
X<<< ..., stream >>>();
libraryCall(stream); // Launches A, B, C, D
Z<<< ..., stream >>>();
```

```
// Now convert the stream to a graph
cudaStreamEndCapture(stream, &graph);
```



## **CREATE GRAPHS DIRECTLY**

#### Map Graph-Based Workflows Directly Into CUDA

// Define graph of work + dependencies
cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel\_a, {}, ...); cudaGraphAddNode(graph, kernel\_b, { kernel\_a }, ...); cudaGraphAddNode(graph, kernel\_c, { kernel\_a }, ...); cudaGraphAddNode(graph, kernel\_d, { kernel\_b, kernel\_c }, ...); // Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

```
// Launch executable graph 100 times
for(int i=0; i<100; i++)
    cudaGraphLaunch(instance, stream);</pre>
```

B C D Graph from framework

## **GRAPH EXECUTION SEMANTICS**

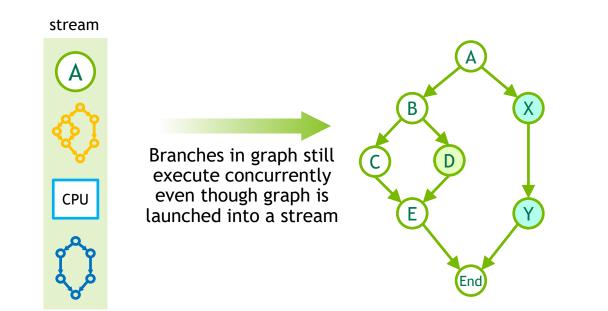
#### Order Graph Work With Other Non-Graph CUDA Work

| A <<< 256, 256, 0, stream >>>();               |  |  |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|--|--|
| <pre>cudaGraphLaunch(i1, stream);</pre>        |  |  |  |  |  |  |  |
| <pre>cudaStreamAddCallback(stream, cpu);</pre> |  |  |  |  |  |  |  |
| <pre>cudaGraphLaunch(i2, stream);</pre>        |  |  |  |  |  |  |  |

```
// Graph1 launch
// CPU callback
// Graph2 launch
```

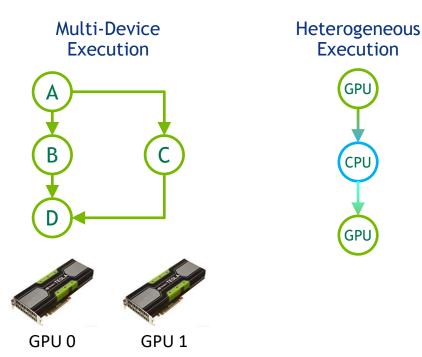
// Kernel launch

```
cudaStreamSynchronize(stream);
```


```
A
CPU
CPU
```

stream

#### If you can put it in a CUDA stream, you can run it together with a graph


## **GRAPHS IGNORE STREAM SERIALIZATION RULES**

Launch Stream Is Used <u>Only</u> For Ordering With Other Work

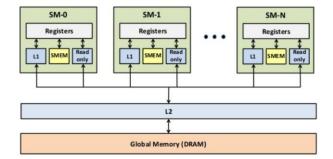


## **CROSS-DEVICE DEPENDENCIES**

## Graphs May Span Multiple GPUs



CUDA is closest to the O/S and the hardware


- Can optimize multi-device dependencies
- Can optimize heterogeneous dependencies
- Define locality per-node

## NVCC IN CUDA 10 Improving Efficiency

Extensible Whole Program (-ewp) mode compilation support

Enables efficient compilation with use of CUDA run-time device library

Compiler optimization and code generation heuristics tuning for Volta and Turing



Efficient Code Generation for Chip Architecture

## **ENHANCED HALF-PRECISION FUNCTIONALITY**

### Includes Limited half Type Support For CPU Code

Half-precision atomic ADD (Volta+) (round-to-nearest mode)

Host-side conversion operators between *float* and *half* types

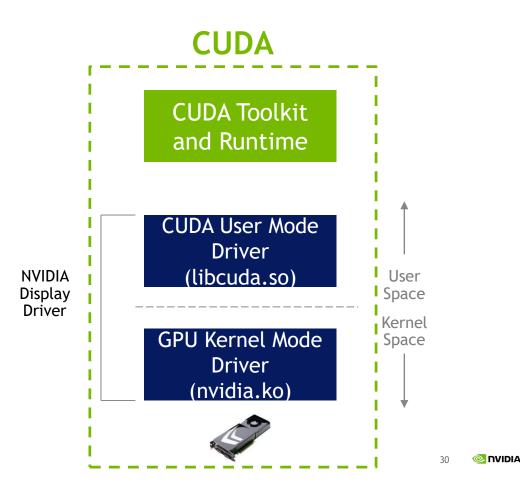
half atomicAdd(half \*address, half val); half2 atomicAdd(half2 \*address, half2 val);

| half pi = 3.1415f;                 | <pre>// Convert float to half</pre> |
|------------------------------------|-------------------------------------|
| <pre>float fPI = (float)hPI;</pre> | <pre>// Convert half to float</pre> |

Host-side construction and assignment operators for *half* and *half2* types

| half pi = 3.1415f;                       |                                         |
|------------------------------------------|-----------------------------------------|
| half also_pi = pi;                       | // Assign half to half                  |
| <pre>half2 vector_pi(pi, also_pi);</pre> | <pre>// Construct half2 from half</pre> |

NOTE: Half-precision arithmetic operations remain only available in device code

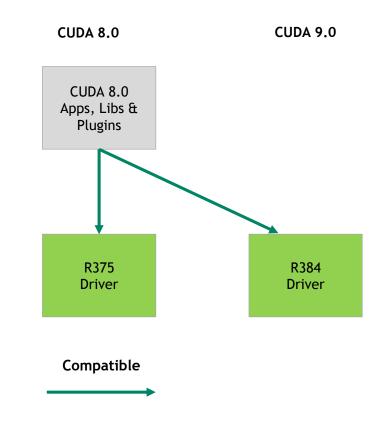

# **CUDA DEPLOYMENT**

## **CUDA INSTALLED COMPONENTS**

CUDA is comprised of three components

- 1. CUDA Toolkit (build applications)
- 2. CUDA User Mode Driver (run applications)
- 3. NVIDIA Kernel Mode Driver (run applications)

Note that components 2 and 3 are delivered together in the NVIDIA Display Driver package

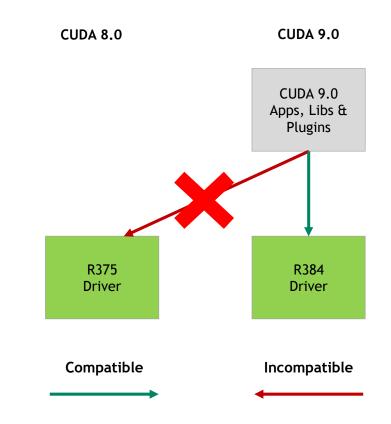



# CUDA COMPATIBILITY - TODAY

Older CUDA Version Runs on Newer Display Driver

CUDA driver API is backward compatible but not forward compatible

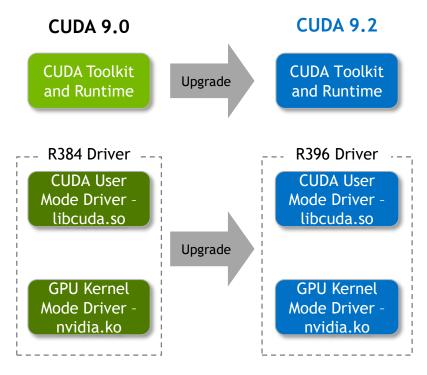
- Each CUDA release has a minimum driver requirement
- Applications compiled against a particular version of CUDA API will work on later driver releases
- ► E.g.
  - CUDA 8.0 needs >= R375
  - CUDA 9.0 needs >= R384



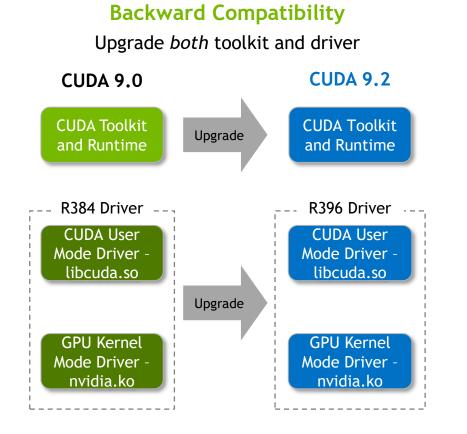

# CUDA COMPATIBILITY - TODAY

#### Newer CUDA Version DOES NOT Run on Older Display Driver

CUDA driver API is backward compatible but not forward compatible


- Each CUDA release has a minimum driver requirement
- Applications compiled against a particular version of CUDA API will work on later driver releases
- ► E.g.
  - CUDA 8.0 needs >= R375
  - CUDA 9.0 needs >= R384




## **CUDA COMPATIBILITY - UPGRADE PATHS**

#### Backward Compatibility

Upgrade *both* toolkit and driver



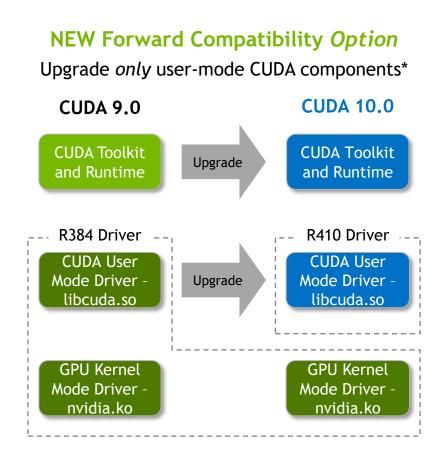
## **CUDA COMPATIBILITY - UPGRADE PATHS**



#### **NEW Forward Compatibility** Option Upgrade only user-mode CUDA components\* **CUDA 10.0 CUDA 9.0 CUDA** Toolkit CUDA Toolkit Upgrade and Runtime and Runtime R384 Driver R410 Driver **CUDA** User **CUDA User** Mode Driver -Mode Driver -Upgrade libcuda.so libcuda.so **GPU Kernel GPU** Kernel Mode Driver -Mode Driver nvidia.ko nvidia.ko

34

# **CUDA COMPATIBILITY - UPGRADE PATHS**


#### Starting with CUDA 10.0

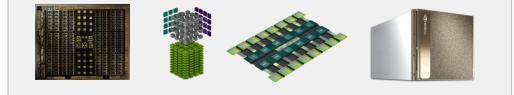
New compatibility platform upgrade path available

- Use newer CUDA toolkits on older driver installs
- Compatibility only with specific older driver versions

System requirements

- Tesla GPU support only no Quadro or GeForce
- Only available on Linux

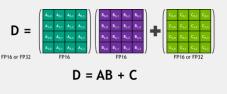



35

# CUDA 10.1 - COMING TO SUMMIT SOON!

https://developer.nvidia.com/cuda-toolkit

#### **TURING AND NEW SYSTEMS**


New GPU Architecture, Tensor Cores, NVSwitch Fabric



#### **CUDA PLATFORM**

CUDA Graphs, Vulkan & DX12 Interop, Warp Matrix





#### **LIBRARIES**

GPU-accelerated hybrid JPEG decoding, Symmetric Eigenvalue Solvers, FFT Scaling



#### **DEVELOPER TOOLS**

New Nsight Products - Nsight Systems and Nsight Compute

| B balance         |                            |  |      |  |  |
|-------------------|----------------------------|--|------|--|--|
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
| +1/3×0+-          |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  | 1.00 |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
| OR Design and the |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   |                            |  |      |  |  |
|                   | of a billing by sufficient |  |      |  |  |
|                   |                            |  |      |  |  |

| -    | s                                 | ource Live Registers | Sampling Data (All) | Sampling Data (No Issue) |
|------|-----------------------------------|----------------------|---------------------|--------------------------|
| 01PT | SHFL.IDX PT, RZ, RZ, RZ, RZ;      | 0                    | 223                 | 6                        |
|      | MOV R1, c[0x0][0x28];             | 1                    | 13                  | 44                       |
|      | S2R R0, SR_CTAID.X;               | 2                    | 143                 | 75                       |
|      | S2R R2, SR_TID.X;                 | 3                    | 0                   | 34                       |
|      | IMAD R0, R0, c[0x0][0x0], R2;     | 3                    | 599                 | 94                       |
|      | ISETP.GE.AND P0, PT, R0, c[0x0][0 | x170] 2              | 125                 | 26                       |
| 898  | EXIT;                             | 2                    | 259                 | 86                       |
|      | MOV R2, R0;                       | 3                    | 386                 | 29                       |
| @!PT | SHFL.IDX PT, RZ, RZ, RZ;          | 2                    | 0                   | e                        |
|      | MOV 84, 0x4;                      | 3                    | e                   | 6                        |
|      | IMAD.WIDE R4, R2, R4, c[ex0][0x16 | e]; 4                | 0                   | e                        |
|      | LDG.E.SYS R3, [R4];               | 3                    | 0                   | 6                        |
|      | BSSY 80, 0xb00976780;             | 3                    | 0                   | 6                        |
|      | SHF.R.S32.HI R0, RZ, 0x1f, R2;    | 4                    | •                   | e                        |