
March 27, 2019 | OLCF User Conference Call
Steve Abbott

HIGHLIGHTS OF CUDA 10 FOR SUMMIT

2

INTRODUCING CUDA 10.0

New GPU Architecture, Tensor Cores, NVSwitch Fabric

TURING AND NEW SYSTEMS
CUDA Graphs, Vulkan & DX12 Interop, Warp Matrix

CUDA PLATFORM

GPU-accelerated hybrid JPEG decoding,
Symmetric Eigenvalue Solvers, FFT Scaling

LIBRARIES
New Nsight Products – Nsight Systems and Nsight Compute

DEVELOPER TOOLS

Scientific Computing

3

CUDA DEVELOPMENT ECOSYSTEM

CUDA: Programming Model, GPU Architecture, System Architecture

Specialized PerformanceEase of use

FrameworksApplications Libraries
Directives and

Standard Languages
Extended Standard

Languages

CUDA-C++
CUDA Fortran

GPU Users Domain
Specialists

Problem
Specialists

New Algorithm Developers and
Optimization Experts

10

PROGRAMMING
MODEL

11

0 1 00 1 1 0 1 1 0 0 01 0 1 0 = 0.707031

sign
bit

exponent
(5 bits)

mantissa
(10 bits)

IEEE-754.2008 FP16 Specification

Precision

atomicAdd(&h, (half)1.15f);

half2 hvec(0.94f, -2.13f);
atomicAdd(&h2, hvec);

FP16 Operations

NEW PROGRAMMING MODEL FEATURES

Efficiency

NVCC Enhancements

Turing

Multi-Precision

Tensor Cores

Interop

Lightweight Graphics

Interop

Execution

Asynchronous

Task Graphs

12

ASYNCHRONOUS TASK GRAPHS
Execution Optimization When Workflow is Known Up-Front

DL Inference

Loop & Function
offload

Deep Neural Network
Training

HPC SimulationLinear Algebra

13

ALL CUDA WORK FORMS A GRAPH

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams

14

ALL CUDA WORK FORMS A GRAPH

Graph of Dependencies

End

A

B X

C D

E Y

Any CUDA stream can be
mapped to a graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams

15

DEFINITION OF A CUDA GRAPH

Sequence of operations, connected by dependencies.

Operations are one of:

Kernel Launch CUDA kernel running on GPU

CPU Function Call Callback function on CPU

Memcopy/Memset GPU data management

Sub-Graph Graphs are hierarchical

Graph Nodes Are Not Just Kernel Launches

A

B X

C D

E Y

End

16

NEW EXECUTION MECHANISM
Graphs Can Be Generated Once Then Launched Repeatedly

A

B X

C D

E Y

End

for(int i=0; i<1000; i++) {
launch_graph(G);

}

17

EXECUTION OPTIMIZATIONS

Launch latencies:

▪ CUDA 10.0 takes at least 2.2us CPU time to launch each CUDA kernel on Linux

▪ Pre-defined graph allows launch of any number of kernels in one single operation

Latency & Overhead Reductions

time

Launch

A

Launch

B

Launch

C

Launch

D

Launch

E

A B C D E

Build

Graph
Launch Graph

CPU Idle

CPU Idle

A B C D E

18

Example: Small 3D FFT

25% end-to-end improvement for 323 3D-FFT
(16us with stream launch, 12us with graph launch)

PERFORMANCE IMPACT
Optimizations for Short-Runtime Operations

CPU launch time improvements

Typical: 33% faster than stream launch

NOTE: Performance impact is workload-dependent

Benefits especially short-running kernels, where overheads account for more runtime

19

THREE-STAGE EXECUTION MODEL

Define

A

B X

C D

E Y

End

Single Graph “Template”

Instantiate

Multiple “Executable Graphs”

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

Execute

Executable Graphs
Running in CUDA Streams

s1 s2 s3

Created in host code
or built up from libraries

Snapshot of template
Sets up & initializes GPU

execution structures
(create once, run many times)

Concurrency in graph
is not limited by stream

20

CONVERT CUDA STREAM INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initating stream capture

cudaStreamBeginCapture(&stream1, cudaStreamCaptureModeGlobal);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

A

B

Wait

D

C

Wait

stream1 stream2 graph

D

B C

A

21

CONVERT CUDA STREAM INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initating stream capture

cudaStreamBeginCapture(&stream1, cudaStreamCaptureModeGlobal);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

A

B

Wait

D

C

Wait

stream1 stream2 graph

D

B C

A

Capture follows

inter-stream dependencies

to create forks & joins
cudaStreamWaitEvent(stream2, e1);

22

CAPTURE EXTERNAL WORK
Stream Capture Continues Into Library Calls

// Start by initating stream capture

cudaStreamBeginCapture(&stream, cudaStreamCaptureModeGlobal);

// Captures my kernel launches, recurse into library calls

X<<< ..., stream >>>();

libraryCall(stream); // Launches A, B, C, D

Z<<< ..., stream >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream, &graph);

X

Z

A

D

B C

X

Z

D

B C

A

Resultant
graph

Inserting
graph

Library call

23

CREATE GRAPHS DIRECTLY
Map Graph-Based Workflows Directly Into CUDA

D

B C

A

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

Graph from
framework

24

GRAPH EXECUTION SEMANTICS
Order Graph Work With Other Non-Graph CUDA Work

stream

launchWork(cudaGraphExec_t i1, cudaGraphExec_t i2,
CPU_Func cpu, cudaStream_t stream) {

A <<< 256, 256, 0, stream >>>(); // Kernel launch

cudaGraphLaunch(i1, stream); // Graph1 launch

cudaStreamAddCallback(stream, cpu); // CPU callback

cudaGraphLaunch(i2, stream); // Graph2 launch

cudaStreamSynchronize(stream);

}

A

CPU

If you can put it in a CUDA stream, you can run it together with a graph

25

GRAPHS IGNORE STREAM SERIALIZATION RULES
Launch Stream Is Used Only For Ordering With Other Work

stream

A

CPU

End

A

B X

C D

E Y

Branches in graph still
execute concurrently
even though graph is

launched into a stream

26

CROSS-DEVICE DEPENDENCIES

CUDA is closest to the O/S and the hardware

▪ Can optimize multi-device dependencies

▪ Can optimize heterogeneous dependencies

▪ Define locality per-node

Graphs May Span Multiple GPUs

GPU 0 GPU 1

CB

A

D

GPU

CPU

GPU

Heterogeneous
Execution

Multi-Device
Execution

27

NVCC IN CUDA 10

Extensible Whole Program (-ewp) mode
compilation support

Enables efficient compilation with use of CUDA
run-time device library

Compiler optimization and code generation
heuristics tuning for Volta and Turing

Improving Efficiency

Efficient Code Generation for
Chip Architecture

28

ENHANCED HALF-PRECISION FUNCTIONALITY

Half-precision atomic ADD
(Volta+) (round-to-nearest mode)

Host-side conversion operators
between float and half types

Host-side construction and
assignment operators for

half and half2 types

Includes Limited half Type Support For CPU Code

half atomicAdd(half *address, half val);

half2 atomicAdd(half2 *address, half2 val);

half pi = 3.1415f;

half also_pi = pi; // Assign half to half

half2 vector_pi(pi, also_pi); // Construct half2 from half

half pi = 3.1415f; // Convert float to half

float fPI = (float)hPI; // Convert half to float

NOTE: Half-precision arithmetic operations remain only available in device code

29

CUDA DEPLOYMENT

30

CUDA INSTALLED COMPONENTS

CUDA is comprised of three components

1. CUDA Toolkit (build applications)

2. CUDA User Mode Driver (run applications)

3. NVIDIA Kernel Mode Driver (run applications)

Note that components 2 and 3 are delivered
together in the NVIDIA Display Driver package

NVIDIA
Display
Driver

CUDA

CUDA Toolkit

and Runtime

CUDA User Mode

Driver

(libcuda.so)

GPU Kernel Mode

Driver

(nvidia.ko)

Kernel
Space

User
Space

31

CUDA COMPATIBILITY – TODAY

CUDA driver API is backward compatible but not
forward compatible

 Each CUDA release has a minimum driver
requirement

 Applications compiled against a particular version
of CUDA API will work on later driver releases

 E.g.

 CUDA 8.0 needs >= R375

 CUDA 9.0 needs >= R384

Older CUDA Version Runs on Newer Display Driver

CUDA 8.0

Apps, Libs &

Plugins

CUDA 8.0 CUDA 9.0

R375

Driver

R384

Driver

Compatible

32

CUDA COMPATIBILITY – TODAY

CUDA driver API is backward compatible but not
forward compatible

 Each CUDA release has a minimum driver
requirement

 Applications compiled against a particular version
of CUDA API will work on later driver releases

 E.g.

 CUDA 8.0 needs >= R375

 CUDA 9.0 needs >= R384

Newer CUDA Version DOES NOT Run on Older Display Driver

CUDA 8.0 CUDA 9.0

CUDA 9.0

Apps, Libs &

Plugins

R375

Driver

R384

Driver

Compatible Incompatible

33

CUDA COMPATIBILITY – UPGRADE PATHS

CUDA Toolkit

and Runtime

CUDA 9.0 CUDA 9.2

Upgrade

R384 Driver

GPU Kernel

Mode Driver –

nvidia.ko

CUDA User

Mode Driver –

libcuda.so

GPU Kernel

Mode Driver –

nvidia.ko

R396 Driver

CUDA User

Mode Driver –

libcuda.so

Upgrade
CUDA Toolkit

and Runtime

Backward Compatibility

Upgrade both toolkit and driver

34

CUDA COMPATIBILITY – UPGRADE PATHS

CUDA Toolkit

and Runtime

CUDA 9.0 CUDA 9.2

Upgrade

R384 Driver

GPU Kernel

Mode Driver –

nvidia.ko

CUDA User

Mode Driver –

libcuda.so

GPU Kernel

Mode Driver –

nvidia.ko

R396 Driver

CUDA User

Mode Driver –

libcuda.so

Upgrade
CUDA Toolkit

and Runtime

NEW Forward Compatibility Option

Upgrade only user-mode CUDA components*

*requires new ‘cuda-compat-10-0’ package

CUDA Toolkit

and Runtime

CUDA Toolkit

and Runtime
Upgrade

CUDA 9.0

GPU Kernel

Mode Driver –

nvidia.ko

GPU Kernel

Mode Driver –

nvidia.ko

CUDA User

Mode Driver –

libcuda.so

CUDA User

Mode Driver –

libcuda.so

R384 Driver R410 Driver

CUDA 10.0

Upgrade

Backward Compatibility

Upgrade both toolkit and driver

35

CUDA COMPATIBILITY – UPGRADE PATHS

NEW Forward Compatibility Option

Upgrade only user-mode CUDA components*

CUDA Toolkit

and Runtime

CUDA Toolkit

and Runtime
Upgrade

CUDA 9.0

GPU Kernel

Mode Driver –

nvidia.ko

GPU Kernel

Mode Driver –

nvidia.ko

CUDA User

Mode Driver –

libcuda.so

CUDA User

Mode Driver –

libcuda.so

R384 Driver R410 Driver

CUDA 10.0

Upgrade

New compatibility platform upgrade path available

 Use newer CUDA toolkits on older driver installs

 Compatibility only with specific older driver
versions

System requirements

 Tesla GPU support only – no Quadro or GeForce

 Only available on Linux

Starting with CUDA 10.0

*requires new ‘cuda-compat-10-0’ package

46

CUDA 10.1 – COMING TO SUMMIT SOON!
https://developer.nvidia.com/cuda-toolkit

New GPU Architecture, Tensor Cores, NVSwitch Fabric

TURING AND NEW SYSTEMS
CUDA Graphs, Vulkan & DX12 Interop, Warp Matrix

CUDA PLATFORM

GPU-accelerated hybrid JPEG decoding,
Symmetric Eigenvalue Solvers, FFT Scaling

LIBRARIES
New Nsight Products – Nsight Systems and Nsight Compute

DEVELOPER TOOLS

Scientific Computing

