
CAAR Porting Experiences: RAPTOR

Ramanan Sankaran
Oak Ridge National Laboratory

CAAR Team

Joseph C. Oefelein, Georgia Tech
Ramanan Sankaran, K. C. Gottiparthi, ORNL
Brian Rogers, Lixiang Luo, IBM
Levi Barnes, NVIDIA

2

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing
Facility at ORNL, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

3

RAPTOR – Software for Large Eddy
Simulation (LES)
• Theoretical framework (Comprehensive)

– Fully-coupled, compressible conservation equations
– Real-fluid equation(s) of state for non-ideal gas/liquid systems

(high-pressure phenomena)
– Detailed thermodynamics, transport, and chemistry
– Multiphase flow, sprays (Lagrangian-Eulerian formulation)
– Generalized subfilter model framework for treatment of turbulence
– Dynamic subfilter modeling (no tuned constants)

• Numerical framework (High-quality)
– Structured multiblock topology in generalized curvilinear

coordinates with unstructured connectivity between blocks
– Staggered finite-volume differencing

(non-dissipative, discretely conservative)
– Dual-time stepping with generalized preconditioning

(all-Mach-number)
– Detailed treatment of geometry, wall phenomena, transient BC’s

4

Mesh discretization

• Structured curvilinear mesh
• Multi-block mesh

decomposition
– Point-to-point full face match

at block interfaces
– Arbitrary number of blocks

can merge at block
boundaries

• Multi-block decomposition
naturally leads to distributed
memory parallelism
– Data exchange on block

interfaces Image source: http://www2.le.ac.uk/

5

Objectives

• Setup a canonical simulation problem
– Representative of performance characteristics of high

pressure reacting flow calculations
– Scientifically interesting
– Convenient to generate test configurations for

strong/weak scaling studies

• Analyze performance and arrive at strategy for
acceleration

• Prepare code for Summit
• Establish path forward for performance

improvement

7

LES of high pressure fuel injection

Liquid n-Decane-air jet-in-cross-flow:
• Pressure: 40 bar (supercritical)

• Jet Diameter: d = 1 mm

• Domain: 32d x 24d x 16d

• U = 40 m/s, T = 450 K (Jet)

• U = 80 m/s, T = 1000 K (Cross-Flow)

• Re = 125,000 (Jet)

• Re = 277,000 (Cross-Flow)

• J = 10

Mixture fraction isosurface (high)
Mixture fraction isosurface (low)
Vorticity (reveals structure)

Cut planes show

scalar-dissipation field

(rate at which fuel/oxidizer mix)

1. A. Ruiz, G. Lacaze and J. C. Oefelein. Flow topologies and turbulence

scales in a jet-in-cross-flow. Physics of Fluids, 27, 045101, 2015.

2. K. C. Gottiparthi, R. Sankaran, A. Ruiz, G. Lacaze and J. C. Oefelein,

AIAA-2016-1939, 2016

3. K. C. Gottiparthi, R. Sankaran and J. C. Oefelein, AIAA-2017-1960, 2017

8

Parametric scaling studies …
• Grids G1 to G4 for resolution tests
• Range of grid topology (T1-T5) for performance analysis

Grid No. of cells
across dj

Grid size
(in million cells)

G1 8 6.29

G2 16 50.33

G3 32 402.65

G4 64 3221.23

Topology No. of blocks G1 G2 G3 G4
T1 24 643 1283 2563 5123

T2 192 323 643 1283 2563

T3 1536 163 323 643 1283

T4 12288 83 163 323 643

T5 98304 83 163 323

9

RAPTOR weak scaling on Titan

Block size per MPI task

• Weak scaling of original code was measured on Titan
• Pure MPI code, with 16 MPI ranks per node

10

51.2

33.8

5.1

3.1
6.8 Thermodynamics/transport

Turbulence

Time derivatives

Jacobian

Other routines

Performance profile on Titan
• Highest share of cost - EOS, thermodynamics and transport

property evaluation

• Turbulence closure model follows

• Test problem uses a simple chemistry. Complex chemistry
could make this another major kernel

12

Summit Readiness Strategy

• Rewrite kernels in C++
– Use Kokkos performance portable programming model
– Provide interfaces for coupling with the Fortran solver

• Hybridize the Fortran solver
– Refactor from pure MPI to hybrid MPI+OpenMP
– Port to GPUs using OpenMP 4.5

13

Vectorizing a serial fortran routine

subroutine convertYtoX(ys, xs, ws, ws_bar)
real, dimension(ns) :: ys, xs
real, dimension(ns) :: ws
real :: ws_bar

do m=1, ns
xs(m)=ys(m)/ws(m)/ws_bar;

end do

14

Vectorizing a serial fortran routine

subroutine convertYtoX(ys, xs, ws, ws_bar)
real, dimension(ns) :: ys, xs
real, dimension(ns) :: ws
real :: ws_bar

do m=1, ns
xs(m)=ys(m)/ws(m)/ws_bar;

end do

subroutine convertYtoX(ys, xs, ws, ws_bar)
real, dimension(nc, ns) :: ys, xs
real, dimension(ns) :: ws
real, dimension(nc) :: ws_bar

do i=1, nc
do m=1, ns
xs(i,m)=ys(i,m)/ws(m)/ws_bar(i);

end do
end do

15

Rewritten as a Kokkos kernel
struct convertYtoX {
VectorFieldType ys;
VectorFieldType xs;
ScalarFieldType ws_bar;

// constructor
convertYtoX(

VectorFieldType ys_, VectorFieldType xs_,
ScalarFieldType ws_bar_)
: ys(ys_), xs(xs_), ws_bar(ws_bar_) {};

KOKKOS_INLINE_FUNCTION
void operator()(const size_type i) const {
for(int m=0; m<ns; m++){
xs(i,m)=ys(i,m)/ws(m)/ws_bar(i);

}
}

};

Kokkos::parallel_for(nCells, convertYtoX(ys, xs, ws_bar));

16

Rewritten as a Kokkos kernel

for(int m=0; m<ns; m++){
xs(i,m)=ys(i,m)/ws(m)/ws_bar(i);

}

• Fortran-like array access operator
• However, the data layout in memory is specified

separately
– LayoutLeft (GPU) or LayoutRight (CPU)

• Code generated for target execution space without
device specific programming model

Kokkos::parallel_for(nCells, convertYtoX(ys, xs, ws_bar));

17

Special Sauce

• Data interfaces to copy data to and from the fortran
arrays of the main solver
– Transposes and deep_copy only when needed

• Custom layout and indexing operators
– Kokkos does not support non-zero start index
– Custom indexing needed to facilitate rewrite of fortran

code and to keep the code readable

• Consider a multidimensional array
Array(NX, NY, NZ, NV)

– LayoutLeft vs. LayoutRight matters for NV
– However NX/NY/NZ are equivalent. There are benefits in

keeping the layout of grid index constant

18

Performance profile after acceleration
• Kokkos kernels are

coupled to the Fortran
solver

• Performance profiled
on Titan with 16 MPI
ranks per node
– K20x shared

through MPS

19

Scalability of the Accelerated Code

Before

• Performance of RAPTOR with the Kokkos kernels tested on
Titan with 16 MPI per node

• Post-acceleration code is ~3.8X faster on 12 to 800 nodes of
Titan

• 64^3 could not fit in GPU memory

After

20

Optimization of the Kokkos Kernels

• Turbulence closure kernel was profiled using visual profiler
– This kernel involves a filter operator applied on a 3D 27 point stencil

on multiple field variables

• Significant time was spent in allocation and deallocation of
memory for temporary arrays
– A single Kokkos view allocation and creating Kokkos subviews

improves performance by 2X.

• High register usage was degrading performance
– Limiting maxregcount through compiler flags yields 12% improvement

• Addressed non-coalesced memory access
• Using shared memory through Kokkos thread teams

21

RAPTOR - flow solver

• Beyond the two big kernels, remaining computational
cost is spread across several functions and loops

• An explicit/dual-time integrator advances the state
• Computing the RHS of the governing equations

involves
– Computing face values of cell center quantities and vice versa
– Computing fluxes on the faces
– Determining flux balance in a cell
– Derivative operators

• The RHS function is coded in modern Fortran
– Long development history with code verification

• Difficult to rewrite and verify

22

Hybridization of RAPTOR
• RAPTOR was hybridized from a pure MPI code to a hybrid

MPI+OpenMP model
– MPI between nodes, OpenMP on the node and vectorizable loops

• As a first step, we added OpenMP for a significant portion of
RHS targeted at CPU threading
– Scoping of private and shared variables
– Loop analysis for potential data races
– Created high level OMP regions with multiple parallel loops within
– Identification of wait and nowait based on data dependencies
– Rewriting the loops and functions to remove false sharing

• The hybridization of RAPTOR went better than expected
– Very few instances of data races
– Most of the RHS evaluation was safe from data races

25

Data Offloading with OpenMP 4.5
• OpenMP 4.5 target directives are used to map the host

memory to device memory
• Two categories of data structures

– Allocated and initialized once at the start and do not change for the
duration of the program (such as grid metrics)

!$omp target enter data &
!$omp map(to: sxu, syv, szw)

– Allocated at the start and need to be updated on the host/device
periodically

!$omp target enter data &
!$omp map(alloc: qh, qv, dq)
........
!$omp target update to (qh)
........
!$omp target update from (dq)

26

Offloading loops to device (1)
!$omp target

!$omp map (UF, VF, WF, dq) &

!$omp depend (in: UF, VF, WF) &

!$omp depend (inout: dq) &

!$omp nowait

!$omp teams distribute parallel &

!$omp do collapse(4) default(none) &

!$omp shared (UF, VF, WF, dq) &

!$omp shared (nx, ny, nz, ne)

!$omp teams distribute parallel do collapse(4)

do l=1,ne

do k=1,nz-1

do j=1,ny-1

do i=1,nx-1

dq(i,j,k,l) = dq(i,j,k,l) - (UF(i+1,j,k,l) - UF(i,j,k,l) &

+ VF(i,j+1,k,l) - VF(i,j,k,l) &

+ WF(i,j,k+1,l) - WF(i,j,k,l))

end do; end do; end do; end do

!$omp end target

Arrays map’ped to target device
Already allocated at start using
!$omp map (alloc: ...)

27

Offloading loops to device (2)
!$omp target

!$omp map (UF, VF, WF, dq) &

!$omp depend (in: UF, VF, WF) &

!$omp depend (inout: dq) &

!$omp nowait

!$omp teams distribute parallel &

!$omp do collapse(4) default(none) &

!$omp shared (UF, VF, WF, dq) &

!$omp shared (nx, ny, nz, ne)

!$omp teams distribute parallel do collapse(4)

do l=1,ne

do k=1,nz-1

do j=1,ny-1

do i=1,nx-1

dq(i,j,k,l) = dq(i,j,k,l) - (UF(i+1,j,k,l) - UF(i,j,k,l) &

+ VF(i,j+1,k,l) - VF(i,j,k,l) &

+ WF(i,j,k+1,l) - WF(i,j,k,l))

end do; end do; end do; end do

!$omp end target

Dependencies on data are marked.
Data updates to/from target are
similarly marked
!$omp target update to(dq)&
!$omp depend (out:dq)

28

Offloading loops to device (3)
!$omp target

!$omp map (UF, VF, WF, dq) &

!$omp depend (in: UF, VF, WF) &

!$omp depend (inout: dq) &

!$omp nowait

!$omp teams distribute parallel &

!$omp do collapse(4) default(none) &

!$omp shared (UF, VF, WF, dq) &

!$omp shared (nx, ny, nz, ne)

!$omp teams distribute parallel do collapse(4)

do l=1,ne

do k=1,nz-1

do j=1,ny-1

do i=1,nx-1

dq(i,j,k,l) = dq(i,j,k,l) - (UF(i+1,j,k,l) - UF(i,j,k,l) &

+ VF(i,j+1,k,l) - VF(i,j,k,l) &

+ WF(i,j,k+1,l) - WF(i,j,k,l))

end do; end do; end do; end do

!$omp end target

Most kernels are marked “nowait”
Dependencies are marked
explicitly

29

Offloading loops to device (4)
!$omp target

!$omp map (UF, VF, WF, dq) &

!$omp depend (in: UF, VF, WF) &

!$omp depend (inout: dq) &

!$omp nowait

!$omp teams distribute parallel &

!$omp do collapse(4) default(none) &

!$omp shared (UF, VF, WF, dq) &

!$omp shared (nx, ny, nz, ne)

!$omp teams distribute parallel do collapse(4)

do l=1,ne

do k=1,nz-1

do j=1,ny-1

do i=1,nx-1

dq(i,j,k,l) = dq(i,j,k,l) - (UF(i+1,j,k,l) - UF(i,j,k,l) &

+ VF(i,j+1,k,l) - VF(i,j,k,l) &

+ WF(i,j,k+1,l) - WF(i,j,k,l))

end do; end do; end do; end do

!$omp end target

Loops are collapsed and parallelized
Raptor loops are fine grained
parallel with no data races or
dependencies across iterations

30

Offloading loops to device (5)
!$omp target

!$omp map (UF, VF, WF, dq) &

!$omp depend (in: UF, VF, WF) &

!$omp depend (inout: dq) &

!$omp nowait

!$omp teams distribute parallel &

!$omp do collapse(4) default(none) &

!$omp shared (UF, VF, WF, dq) &

!$omp shared (nx, ny, nz, ne)

do l=1,ne

do k=1,nz-1

do j=1,ny-1

do i=1,nx-1

dq(i,j,k,l) = dq(i,j,k,l) - (UF(i+1,j,k,l) - UF(i,j,k,l) &

+ VF(i,j+1,k,l) - VF(i,j,k,l) &

+ WF(i,j,k+1,l) - WF(i,j,k,l))

end do; end do; end do; end do

!$omp end target

Explicit data sharing clauses.
Default set to none.
Loop indices are auto private.

31

Data update to/from host

!$omp target update if(lacceldev) &
!$omp to (dq) &
!$omp depend (out: dq) &
!$omp nowait

call flxQ_C
call flxQ(1); call srcQ_C

!$omp target update if(lacceldev) &
!$omp from (dq) &
!$omp depend (out: dq)

• MPI exchange of halo requires special handling of
the halos for packing/unpacking buffers

• Halo packing code better suited on host

32

RAPTOR Performance on Summit

32

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

W
al

lti
m

e
pe

r i
te

ra
tio

n
pe

r n
od

e
[s

]

of Summit nodes

CPU CPU+GPU

• GPU speedup = 4.3X on 1152 nodes
• GPU speedup = 3.8x on 3888 nodes

RAPTOR weak scaling performance for a n-decane air jet in cross flow (JICF).

33

Resource-aware Task Placement

• Heterogeneous systems are a network of
connected resources

• Tasks need to be assigned to the resources
• Tasks talk to each other - application topology
• System resources are interconnected – machine

topology
• What is the optimal placement of tasks on the

machine resources to maximize performance?

34

Formulation (QAP)
• Let a parallel application have M tasks

– matrix F is the application topology matrix (MxM)

– fi,j is the volume of communication from task i to task j

– F is a sparse matrix with bandwidth “b”

• Some algorithms require all-to-all communication

• More predominantly, communication occurs between subsets

• Network characteristics given by matrix D

– di,j is the communication “distance” between resource i, j

– D is symmetric and dense

• A placement function ρ(i) that gives the node on
which task i is placed

– the communication overhead or cost is C=

2. n locations in a distance matrix D where each entry dst is the distance
between locations s and t

3. and a function ⇢ which maps facilities onto locations, where the function
⇢(j) is a permutation of the numbers {1, 2, ..., n}

The problem of finding the assignment that minimizes

X

ij

fijd⇢(i)⇢(j)

is the quadratic assignment problem. The QAP models the problem of minimiz-
ing the assignment of facilities to locations; an optimal placement would consist
of facilities with high flows between each other being placed beside one another.
The QAP is an NP-Hard problem, so the exact search algorithms are limited
to solving small to moderately sized problems due to the computation time ex-
ponentially increasing. Therefore, heuristic and approximation algorithms are
used for larger problems. We will discuss the literature that surrounds the QAP
and the methods to solve it. Then we present the genetic algorithm and sim-
ulated annealing we developed. Finally, we explain the results and provide a
basis for future work.

2 Related Work

The problem of assigning facilities onto locations has been studied and several
methods of solution have been evaluated. Bokhari [2] recognized the mapping
problem does not have an exact method and heuristic methods were needed to
find an optimal solution. Pardalos et al [11] reviewed all four techniques for ap-
proximating combinatorial optimization problems. Loiola et al [10] conducted
a survey for the QAP and the methods used to solve it. Some of the heuris-
tic methods used to approximate the QAP are: tabu search, GRASP, genetic
algorithm, and simulated annealing.

Tabu Search uses moves to find an optimal solution. A move in tabu search
is a permutation of the facilities i and j. If the move improves the objective
function, then the move is made. If there are no improving moves, then a
move is chosen that degrades the objective function the least. After each move,
the pair (i, j) is added to an s sized tabu list and the reversal of the move is
forbidden. Glover [8] explained the fundamental principles of using tabu search
for combinatorial optimizations problems. Chakrapani and Skorin-Kapov [5]
developed a tabu search method which uses a dynamically changing tabu list
size that found close to best known solutions for problems of size up to 90. A
robust tabu search for the QAP was implemented by Taillard [13] which had
improved all previous best known solutions of problems proposed by Skorin-
Kapov.

A greedy randomized adaptive search procedure (GRASP) has two phases,
a construction phase and a local search phase. In the construction phase, a

2

35

GAMPI – Massively parallel genetic
algorithm for the task placement problem

• Identifies the resources allocated by the batch job scheduler

• Spends the first few minutes of the job to determine suitable

task placement

– Solves the quadratic assignment problem using the machine network

topology and task communication topology

• Open source (LGPL) software library

– https://github.com/ramanan/gampi

• WIP: Rank reordering for RAPTOR’s communication

topology with jsrun on Summit

Sankaran, R., Angel, J., & Brown, W. M. (2015). Concurrency and Computation:

Practice and Experience, http://dx.doi.org/10.1002/cpe.3457

https://github.com/ramanan/gampi
http://dx.doi.org/10.1002/cpe.3457

36

Summary

• New C++ implementation of Real gas thermophysics
kernels using Kokkos
• New C++ implementation of dynamic subfilter

turbulence model using Kokkos
• Hybridization of MPI code to MPI+OpenMP
• Addition of OpenMP 4.5 target directives for offloading

flow solver to GPU accelerator
• Topology aware MPI rank placement to improve

scalability

