<ANVvIDIA. ¢

PROGRAMMING MULTI-GPU NODES

Steve Abbott, February 12, 2019

Multi-GPU Programming with OpenACC and CUDA

AGENDA _ [

2 NVIDIA.

SUMMIT NODE

(2) IBM POWERY + (6) NVIDIA VOLTA V100

135 GB/s 135 GB/s

NVLink2 s (50 GBIs) 4 (900 GBYs)

MULTI-GPU
PROGRAMMING
MODELS

MULTI-GPU PROGRAMMING MODELS

Single Thread, Multiple GPUs

A single thread will change devices as-needed to send data and kernels to different GPUs
Multiple Threads, Multiple GPUs

Using OpenMP, Pthreads, or similar, each thread can manage its own GPU
Multiple Ranks, Single GPU

Each rank acts as-if there’s just 1 GPU, but multiple ranks per node use all GPUs
Multiple Ranks, Multiple GPUs

Each rank manages multiple GPUs, multiple ranks/node. Gets complicated quickly!

5 NVIDIA.

MULTI-GPU PROGRAMMING MODELS

Conceptually
Simple

Requires
additional loops
CPU can become a
bottleneck
Remaining CPU
cores often
underutilized

Single Thread, Multiple
GPUs

Conceptually Very
Simple

Set and forget the
device numbers
Relies on external
Threading API

Can see improved
utilization

Watch affinity

Multiple Threads, Multiple

GPUs

Little to no code
changes required
Re-uses existing
domain
decomposition
Probably already
using MPI

Watch affinity

Multiple Ranks, Single GPU

Easily share data
between peer
devices
Coordinating
between GPUs
extremely tricky

Multiple Ranks, Multiple
GPUs

MULTI-DEVICE CUDA

CUDA by default exposes all devices,
numbered 0 - (N-1), if devices are not all the
same, it will reorder the “best” to device 0.

Each device has its own pool of streams.

If you do nothing, all work will go to Device
#0.

Developer must change the current device
explicitly

7 NVIDIA.

MULTI-DEVICE OPENACC

OpenACC presents devices numbered 0 - (N-1)
for each device type available.

The order of the devices comes from the
runtime, almost certainly the same as CUDA

By default all data and work go to the current
device

Developers must change the current device
and maybe the current device type using an
API

8 NVIDIA.

MULTI-DEVICE OPENMP

OpenMP devices numbered 0 - (N-1) for ALL
devices on the machine, including the host.

The order is determined by the runtime, but
devices of the same type are contiguous.

To change the device for data and compute a
clause is added to directives.

Device API routines include a devicenum

9 NVIDIA.

MULTI-GPU
PROGRAMMING WITH
OPENACC AND CUDA

MULTI-GPU W/ CUDA AND OPENACC

The CUDA and OpenACC approaches are sufficiently similar, that | will demonstrate using

OpenACC.

Decoder Ring:

acc_get_device_type()
acc_set_device_type()
acc_set_device_num()
acc_get_device_num(

)
acc_get_num_devices()

N/A

N/A

cudaSetDevice()
cudaGetDevice()
cudaGetDeviceCount()

1

NVIDIA.

Multi-Device Pipeline
A Case Study

We’ll use a simple image filter to demonstrate
these techniques.

No inter-GPU communication required

Pipelining: Breaking a large operation into
smaller parts so that independent operations can
overlap.

Since each part is independent, they can easily
be run on different devices. We will extend the
filter to run on more than one device.

Pipelining in a Nutshell

| Two Independent Operations Serialized I

Overlapping Copying and Computation 13 <AnviDia

I Device O

Device 1

Multi-device Pipelining in a Nutshell

Pipelined Code

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = @; blocky < nblocks; blocky++)
{
long starty = MAX(9,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {
<filter code ommitted>
out[y * step + x * ch]
out[y * step + x * ch + 1]
out[y * step + x * ch + 2]
}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3)
}

#pragma acc wait

}

255 - (scale * blue);
255 - (scale * green);
255 - (scale * red);

Cycle between 3 async
queues by blocks.

Pipelined Code

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{ Cycle between 3 async
for (long blocky = @; blocky < nblocks; blocky++)
(queues by blocks.
long starty = MAX(Q,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {
<filter code ommitted>
out[y * step + x * ch]
out[y * step + x * ch + 1]

255 - (scale * blue);
255 - (scale * green);

out[y * step + x * ch + 2]

} :
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3) Wait for all blocks to

} — complete.

#pragma acc wait

}

255 - (scale * red);

NVPROF Timeline of Pipeline

-
‘ NVIDIA Visual Profiler @jlarkin-dt

File Wiew Window PBun Help

D EE NS - [® e
& % *MewSessionl

L

(%)

-«[?‘WR[IEE@-E&-

189 ms

T4 [=] Process "acc california-175...

|=| Thread 2899274752

EEH
= - QOpenaCC
(|
“ Runtime AP|
- Driver AP|
- Profiling Overhead
[=] [0] Tesla k20c
[= context 1 (CUDA)
= 5F MemCpy (HtoD)
L 5F MemCpy (DtoH)

= compute

- 5F 41.9% blurs_pipe...

-9 20.1% blurs_bloc...

~ 97 20.1% blurs_upd...

=97 17.9% blurs_34_g..

|=| Streams
- Default

- Stream 13

N .

| [blurs pipelin..|

[&~

189.5 ms

[|
]

acc_walt@invert.c:218

cuStreamSynchronize

|
]

[blurS_pipelin.] |

| blurS_pipelin... |
| blurS_pipelin... |

190.5 ms
acc_wait@i...

cuStreams...

[-
| blurs_pipelin...'|
| blurs_pipelin...'|

[blurs pipelin.. | |

K1

_

[+

Extending to multiple devices

Create 1 OpenMP thread on the CPU per-device. This is not strictly necessary, but
simplifies the code.

Within each thread, set the device number.

Divide the blocks as evenly as possible among the CPU threads.

19 NVIDIA.

Multi-GPU Pipelined Code

(OpenMP)

#pragma omp parallel num_threads(acc_get_num_devices(acc_device_defau1t77”””’

Spawn 1 thread per
device.

{
acc_set_device_num(omp_get_thread_num(),acc_device_default); —_—

int queue = 1;
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

Set the device number
per-thread.

{

#pragma omp for schedule(static) _—
for (long blocky = @; blocky < nblocks; blocky++) {

// For data copies we need to include the ghost zones for the filter

Divide the work
among threads.

long starty = MAX(@,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(queue)
starty = blocky * blocksize;
endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(queue)
for (long y = starty; y < endy; y++) { for (long x = 0; x < w; x++) {
<filter code removed for space>

}}

#pragma acc update self(out[starty*step:blocksize*step]) async(queue)
queue = (queue%3)+1;

} /
#pragma acc wait

Wait for each device
in its thread.

}
}

Multi-GPU Pipelined Performance

3.50X

3.00X

2.50X

2.00X

device

1.50X

é;)eed-lég from ﬂ'ngle
¢ % =)

o =

> >

o
o
>

Original

Source: PGl 17.3, NVIDIA Tesla P100 (DGX-1)

Pipelined

2 Devices

4 Devices

Crosses quad
boundary

—— e m m m e — <~ -

2.92X

8 Devices

OpenACC with MPI

Domain decomposition is performed using MPI ranks
Each rank should set its own device

Maybe acc_set_device_num

Maybe handled by environment variable (CUDA_VISIBLE_DEVICES)
GPU affinity can be handled by standard MPI task placement

Multiple MPI Ranks/GPU (using MPS) can work in place of OpenACC work
queues/CUDA Streams

Setting a device by local rank

// This is not portable to other MPI libraries

char *comm_local_rank = getenv("OMPI_COMM_WORLD_LOCAL_RANK");
int local_rank = atoi(comm_local_rank);

char *comm_local_size = getenv("OMPI_COMM_WORLD_LOCAL_SIZE");
int local_size = atoi(comm_local _size);

int num_devices = 5

You may also try using MPI_Comm_split_type() using

Determine a unique ID
for each rank on the
same node.

Use this unique ID to
select a device per
rank.

MPI_COMM_TYPE_SHARED or OMPI_COMM_TYPE_SOCKET.

In the end, you need to understand how jsrun/mpirun is placing your

ranks.

MPI Image Filter (pseudocode)

if (rank == @) read_image(); Decompose image
// Distribute the image to all ranks across processes

MPI_Scatterv(image); (ranks)

MPI_Barrier(); // Ensures all ranks line up for timing
omp_get wtime();

MPI_Barrier(); // Ensures all ranks complete before timing

omp_get_wtime(); Receive final parts

MPI_Gatherv(out); from all ranks.

if (rank == @) write_image();

Launch with good

$ jsrun -n6-al-cl-gil... GPU/process affinity

There’s a variety of ways to do MPI decomposition, this is what | used for
this particular example.

Multi-GPU Pipelined Performance (MPI)

9.00X
8.00X
7.00X
6.00X

5.00X

s 1.00X

1 Device 2 Devices

Source: PGl 17.3, NVIDIA Tesla P100 (DGX-1), Communication Excluded

2.83X

4 Devices

4.89X

Crosses quad

boundary

8 Devices

16 Devices

9.00X

8.00X

7.00X

6.00X

5.00X

Multi-GPU Pipelined Performance (MPI)

8.51X

|

|
-
I Crosses node
/ boundary

Crosses quad
boundary

1.00X

1 Device 2 Devices 4 Devices | 8 Devices | 16 Devices

Source: PGl 17.3, NVIDIA Tesla P100 (DGX-1), Communication Excluded

MULTI-DEVICE CUDA

Same Pattern, Different API

#pragma omp parallel MPI Comm rank(local comm, &local rank) ;
{
cudaSetDevice (idx) ;
#pragma omp for
for (int b=0; b < nblocks; b++)
{
cudaMemcpyAsync (.., streams|[b%3]);
blur kernel <<<griddim, blockdim,
0, streams[b%3]>>>();

cudaMemcpyAsync (.., streams[b%3]); cudaMemcpyAsync (..., streams[b%3]);
}

cudaSetDevice (local rank);

for (int b=0; b < nblocks; b++)

{
cudaMemcpyAsync (.., streams[b%3]);
blur kernel <<<griddim, blockdim,

cudaDeviceSynchronize() ; cudaDeviceSynchronize () ;

0, streams[b%3]>>>();

27 <ANVIDIA.

MULTI-DEVICE OPENMP 4.5

Same Pattern, Different API

#pragma omp parallel num threads (num dev) MPI_Comm rank (local comm, &local rank) ;
{ int dev = local rank;

#pragma omp for a

for (int b=0; b < nblocks; b++) for (int b=0; b < nblocks; b++)

{ {

#pragma omp target update map(to:..) \ #pragma omp target update map(to:..) \
device (dev) depend(inout:A) \ device (dev) depend (inout:A) \
nowait nowait

#pragma omp target teams distribute \ #pragma omp target teams distribute \
parallel for simd device(dev) \ parallel for simd device (dev) \
depend (inout:A) depend (inout:A)

for(..) { ..} for(..) { ..}

#pragma omp target update map (from:..) \ #pragma omp target update map (from:..) \
device (dev) depend(inout:A) \ device (dev) depend (inout:A) \
nowait nowait

} }
#pragma omp taskwait #pragma omp taskwait

) 28 <ANVIDIA.

Multi-GPU Approaches

- Requires additional loops to manage devices,
likely undesirable.

- Very convenient set-and-forget the device. Could
possibly conflict with existing threading.

- Probably the simplest if you already have MPI, he
decomposition is done. Must get your MPI placement correct

- Can allow all GPUs to share common data
structures. Only do this is you absolutely need to, difficult to get right.

29 NVIDIA.

CLOSING SUMMARY

MULTI-GPU APPROACHES

- Requires additional loops to manage devices, likely
undesirable.

- Very convenient set-and-forget the device. Could possibly
conflict with existing threading.

- Probably the simplest if you already have MPI, he
decomposition is done. Must get your MPI placement correct

- Can allow all GPUs to share common data structures. Only do
this is you absolutely need to, difficult to get right.

31 NVIDIA.

GPU TO GPU COMMUNICATION

OpenACC/MP interoperable
Performance may vary between on/off node, socket, HW support for GPU Direct

WARNING: Unified memory support varies wildly between implementations!
Enable peer access for straight forward on-node transfers

Pass CUDA IPC handles for on-node copies

32 NVIDIA.

v

v

v

v

ESSENTIAL TOOLS AND TRICK

Pick on-node layout with OLCF jsrun visualizer

> https://jsrunvisualizer.olcf.ornl.gov/index.html
Select MPI/GPU interaction with jsrun --smpiargs

» “-gpu” for CUDA aware, “off” for pure GPU without MPI

Profile MPI and NVLinks with nvprof

Good performance will require experimentation!

33

<A NVIDIA.

R J

<ANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

