%OAK RIDGE

National Laboratory

LS-Dalton

Ashleigh Barnes

Summit Training Workshop
ORNL, Feb 13, 2019

ORNL is managed by UT-Battelle LLC for the US Department of Energy

%OAK RIDGE

National Laboratory

LS-Dalton: Overview

LS-Dalton

LS-Dalton (Linear Scaling Dalton) is open-source scientific software for electronic structure calculations. LS-
Dalton is developed at Aarhus and Oslo Universities as well as at ORNL. Most parts of LS-Dalton employ linear
scaling and massively parallel implementations, which makes it suitable for calculations on large molecular
systems, in particular when the calculations are carried out on large super computer architectures. In
particular Divide-Expand-Consolidate (DEC) scheme allows for linear-scaling Coupled Cluster Methods.

Key Features Developers (CAAR TEAM)
Divide-Expand-Consolidate(DEC) models: RgﬁrighBél;?Xes
* DEC-MP2 energy, density and gradient, unrestricted Dmitry |. Liakh
energy _ Poul Jorgensen
e DEC-RI-MP2 energy and gradient, Laplace-Transformed

RI-MP2 Thomas Kjaergaard

. , Patrick Ettenh
e DEC-CCSD energy and gradient, unrestricted energy J:rt]ﬂz Eritl’iesr;nuber

e DEC-CCSD(T) energy Kasper Kristensen
Pablo Baudin

. . Philip Pawlowski
Computational details Yang Ming Wang
* Languages: Fortran90, Fortran2003

« Runtime: MPI/OpenMP/OpenACC Full list of developers
http://daltonprogram.org

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

Achieving Linear Scaling

« Canonical coupled cluster ~ #9eter 7 e
(CC) methods are limited by P
poor SCQ“ng W|'|'h Sysfem “Em‘e"standard approach
. Age of
SlZE. themanf @
— MP2: N°
Century - ¢
— CCSD: N8 |
ear £ 1
- CCSD(T): N oot !
I © L Linear scaling
Day i
e A
Hour Linear scaling - embarrasingly parallel

#(OAK RIDGE ggﬁ%ﬁ“g

al Labor:

Achieving Linear Scaling

1
2
1 2 ‘
« Divide-Expand-Consolidate _
(DEC) scheme 3
— Local HF orbitals lead to natural ° .
fragmentation of the system 4 :
- Correlation energy evaluated for ° —i
each fragment independently : :
- Multiple levels of parallelism 10 ' ij[g

Coarse Grained: Fragments calculated independently

Medium Grained: Each fragment calculation distributed

over multiple nodes (MPI)

Fine grained: Thread-level parallelism within each node
,OAK RIDGE | s (OpenMP, OpenACC)

National Laboratory | FACILITY

DEC Scheme

Local HF orbitals

1

Atomic fragment optimization

Y Y Y Y
P Q R S
LA N} i LR B} -
Pair fragments
(pair distance < Rmr)
PR RS

Collection of results for

>
>

energy and density

%OAK RIDGE |¢6R5ie

National Laboratory | FACILITY

Performed at MP2 (RI-MP2) level
P = Occupied orbital space

[P] = Virtual orbital space

g

AE

PO —

z (tgb + t?t?)(zgmjb — gibja)

ieP,jeP
abe[P

b b
2 (t; +tiatj)(2giajb_gibja)+ P <> Q term
ieP,jeQ
abe[P]UlQ]

%OAK RIDGE

National Laboratory

Porfing experience on
Summit: Strategy

Porfing Strategy

Targeting high-level directive-based porting o GPU: OpenACC
and GPU-optimized libraries.

- GPU offloading of FLOP-intensive parts of RI-MP2 module
using openACC and cuBLAS.

* Including Laplace-transtormed RI-MP2 (more efficient
Implementation)

- Increased dependence on parallel distributed memory
tensors via ScaTelib library

o Allow for easy porting of tensor contractions to GPU via TAL-SH library

EEEEEEEEEE
% OAK RIDGE | siers
National Laboratory

FACILITY

GPU-porting of RI-MP2 Module

Focus attention on rate-determining step:
Construction of integrals g4:,; and amplitudes {2

Step Algorithmic step Cost Storage
Loop B
I‘ ;}g}p | -
1 by = Z CuCiy Naux.405O40s Vaos OnosVaos
2)=ty (a+te—ea—es) ' OlosVios OnosVaos
3 tﬁf) = Z Ui tﬁf) Of\os Vios Okos Va0sOkos
T Dgemm
4 tzlm = Z Uaa f“',?) Onos Vaos Okos OnosVaosOkos » CU B LAS
A .
End Loop J Memory managed with
5 f0=)] Ut Onos Vios Ofos ViosOtos OpenACC data regions
7
End Loop B
6 ti°= Z Ust® ViosOtos ViosOos
B
7 = Z UinGa Naux,a05Va0s Onos Oeos Naux.a0sVaosOkos
I
8 (= Z Uaa G5 Naux.r0s V205 Ocos Naux.a0sVa0s Okos
A
9 Gaitj= Z CaiCoy Nauxa0sVios Ofos ViosOfos
OAK RIDGE | siexar
%Nmml Laboratory | FACILITY D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228-237 (2017)

GPU-porting of RI-MP2 Module

Focus attention on rate-determining step:
Construction of integrals g4:,; and amplitudes {2

Step Algorithmic step Cost Storage
Loop B
l-A(Bl ' 2 o 2
1 Ly = Z CaCe Naux.205O%0s Vaos OnosVaos
x
A(B ~A(B) 1
2ty =t (a+ea—ea—es) ' OiosVios OnosVaos
A(B) A(B)
3 4y = Z Uity) Oz0s Vaos Ocos VaosOkos
]
B A(B
4)= Z Uaa f,-((,, ' Onos Vaos Okos OnosVaosOkos
A
End Loop J
a(B)
5 tff= Z Upty Onos Vs Otos ViosOfos
]
End Loop B
b_ B 3 2 2
6 —Z Usst] ViosOos ViosOkos
B
7 = Z Ui Gy Naux.05Va0s Onos Oeos Naux,a0sVaos Oeos
I
8 = Z Uan G, Naux,a05V 05 Ocos Naux a0sVaos Okos
A
9 Gaibj = Z Cai Gy Naux,0sV30s Oos ViosOfos
x
%OAK RIDGE | £3555ie
National Laboratory

Memory adapftive scheme:

« Tiny fragments: Limited by data transfer time. Full

algorithm performed on CPU.

Small fragments: Not limited by data transfer or
memory. All steps performed on GPU.

: Memory limited. Steps 1-5, 7-9 on
GPU, step 6 on CPU.

Huge fragments: Smallest infermediates can’t fif in
GPU memory. Use host cuBLAS calls, library
responsible for moving data to and from GPU as
needed.

FAGILITY D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228-237 (2017)

GPU-porting of RI-MP2 Module

©
w
n
<]
n

@ DCB@tweezer 2 | 3d@pincer
$0.30 3
£ £ 0.4}
20.25 g
w w
5020 e
k) k)
0.15
5 §°2
$0.10 S
b & 0.1
20.05 e
. =
0.0,
1 3 4 5 6 () 1 3 4 5 7
) GPU Speedup e GPU Speedup C70@catcher GLH@mcycle
C70@catch 2 |GLH@mcygle.
] S 0.5 % . v
go. ;
g ©
& 0.4 °
8 8
S 0.3
=)
s
;g 0.2 5l
5 0.1
¥ —
L 3 N Q
Y = 3 4}
5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5. 2
0.7 GPU Speedup o
o Q
@ « |ADOH@CB7 n
(= [=
o o 0.6 2 3|
£ 0.4 : : & ’
g g0.5
w w
= 0.3 =
5 s 0.4 2}
k3 s
§02 £
8 o2 1k
@ 0.1 fra
i“g’ ’}_:J 0.1
0.0 0.
0 2 3 4 7 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 . : . "
GPU Speedup GPU Speedup 0 500 1000 1500 2000 2500

Number of Virtual functions in Pair Fragments
%OAK RIDGE | (heesie . , .
National Laboratory | FACILITY D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228-237 (2017)

ScaTelib integration with TAL-SH library

o CC calculations require evaluation of tensor
contractions. Efficient handling of these contractions
is key to good performance of these modules. :

o Currently utilizing ScaTlelib: a Scalable Tensor Library
in order to distribute tensor contractions across
multiple ranks via tiling.

* Eg Cz'jk:l = Z Aajlek:bai T Bc’ijkl

CL)b 19 / 53)7
37 41 ‘ o 45 / =
- A and B must be sorted appropriately: Agjs = Ajiab. Broai = Babki LT 0L 8L
- Call dgemm ”_), __.,-1--'_29 g 213:; {
1 /5 /=990 />
- Returns contribution to local C tile as Cy. Reorder = Cyy and s BV e B
add to local file. ! s

%OAK RIDGE

LEADERSHIP
) COMPUTING
National Laboratory

FACILITY

ScaTelib integration with TAL-SH library

e TAL-SH: Tensor Algebra Library for Shared-memory

Handles sorting, no explicit reorder

systems. Infegrated as backend for ScaTelib. calls necessary in ScaTeLib
* Asynchronous task scheduling
GPU O GPU 1
» Tasks are pipelined to overlap
\ computation and data transfer
TS ' - 2 active tasks per GPU at any
37 /A /e 2 time
37 | 41 |7
9 13
/25 /29 33

Basic implementation provides ~10x
speedup on Summit
* 1node:jsrun-n6-r6-al1-g1-c
7 -brs
« CPU version uses ESSL

/

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

%OAK RIDGE

National Laboratory

Porting experience on
Summit: Lessons Learned

Compiling and
Debugging

Initial compilation and test runs

e |Initial efforts on SummitDev

e Focused initially on PGI compilers due to need for extensive OpenACC
support

e We were able to compile with GPU support using PGl on Summit with little
trouble (once deprecated compiler flags were removed from cmake)

— Test runs experienced hangs or immediate crashes with “invalid free()” errors
- Crash was found to be caused by calling acc_init before mpi_init.

- Hangs were caused by overlapping OpenACC and OpenMP regions in one
subroutine. Solution was to remove OpenMP regions.

%Qfo RIDGE |¢6R5ie

ional Laboratory | FACILITY

Challenges

« Wrong answers

« Random hangs with large node counts

#0AK RIDGE | seesmsie

National Laboratory | FACILITY

Challenges

« Wrong answers

— Possibly a compiller issue, but was never isolated. This was fixed with
next compiler and software stack update (PGI/18.3).

« Random hangs with large node counts

— Only when using multiple threads

- Attached gdb debugger 1o each process — all but 3 were waiting in
MPI collectives. Remaining 3 were stuck in an OMP CRITICAL region

- Replacing OMP CRITICAL with OMP ATOMIC wherever possible fixed
the hanging problem

e Currently experiencing problems with GPU builds using PGl
versions later than 18.3
— Cublas handle corruption or segmentation faults at MPI calls

%OAK RIDGE |¢6R5ie

National Laboratory | FACILITY

I %OAK RIDGE
National Laboratory

Porting experience on
Summit: Lessons Learned

Improving
Performance

Performance improvement: optimizing jsrun options

oog - -

—

28 29 56 57 88 89 116 117 144 145

30 31 58 59 90 91 118 119 146 147 Core
(21 x Socket)

32 33 60 61

921 193 120 121 j 148 149
34 35 62 63 94 95 122 123 § 150 151 168 169
961 97 124 125 j§ 152 153

100 101 § 128 129 g 156 157

e 6 RS/node: 1 GPU/RS

— CC calculations are
extremely memory intensive.
Balance GPU usage and
memory/rank by using 1 MP!
ank/GPU 8 9 36 37 64 65

— For our code, SMT1 > SMT2 > L 1L L 1L 1
SMT4. SMT4 with 28 OMP —

0 1
2 3
4 5
6 7

14 Jisy | 1520 a3 | o) 102 103 130 131 | 158 159
ThreOdS/ rOnk WAS .ObOUT 2X 6] 17 | Jaa) jasn | 2 e 104 105 ff 132 133 Har?v::r:o':z)re v
as S|OW as SMT] W|'|'h 7 OMP 18 19 J 46 47 J 74 75 106 107 jf 134 135 3
threads per rank. 200 |21 | vae a0 | e i 108 109 Jf 136 137

220 123 | 1500 510 | 178 7 110 111 ff 138 139
« SMT2 with 14 threads was slightly o T

slower than SMT1 260 1270 | 1540 1550 | l82))83

| ____—— RAM
112 113 § 140 141 b
114 115 g 142 143 1

Example: jsrun-n24 -r6-a1-g1 -c 7 -brs ./Isdalton.x

% OAK RIDGE | giare

National Laboratory | FACILITY

Performance improvement: NVProf

nstrument code with nvix custom ranges (used nvix_mod.F?0
from David Appelhans, IBM: hitps://github.com/dappelha/gpu-

tips.qit)
« Where are we wasting time?¢

« What routines can be easily ported to the GPU (e.g. via
libraries) e

EEEEEEEEEE
% OAK RIDGE | siers
National Laboratory

FACILITY

https://github.com/dappelha/gpu-tips.git

Performance improvement: NVProf

* Where are we wasting time?

« What routines can be easily ported to the GPU (e.g. via
libraries) e

#0AK RIDGE | seesmsie

National Laboratory | FACILITY

Performance improvement: NVProf

Master:

s 22.75885

[=I Process "Isdalton.x" (14582)
|=] Thread 3128469952 E
* Runime AP | | miu |

- Driver API | I I I I I ||I| ”l ||
e ———— L —————————— L ————— i s el e
= Markers and Ranges | Il_precalc_DECScreenMat _|ILGET_3... ILGE... ILGET3... IGET ... | |

Is_getintegral... Is_getintegral... Is_getint... m Is_getin... m Is_get... Is_get...

. Build_3CenterERI callll... lowdin_diag_S_minus_sqrt atomic_fr... Build_3(]
- Default Domain Il_precalc_DECScreenMat II_GET_3... 'll_GE... 'l_GET_3... II_GET_... | Il_precalc_DEC...

 Is_getintegral... Is_getintegral... Is_getint... m Is_getin... m Is_get... Is_get...

- Profiling Overhead

Worker:

[=] Process "Isdalton.x" (23789)
[=] Thread 3128469952
L Runtime API
- Driver API

Is_mpibcast Is_mpibcast

|
YT I

. Is_mpibcast Build_3CenterERI Is_mpibcast
L Default Domain ll_precalc_DECS... 1_G...

|
s getl._lsgetl. | [| | |

|=] Markers and Ranges

L Profiling Overhead

% OAK RIDGE | giare

National Laboratory | FACILITY

Performance improvement: NVProf

« Where are we wasting time?¢

 What routines can be easily ported to the GPU (e.g. via
libraries)?

% OAK RIDGE | giare

National Laboratory | FACILITY

Performance improvement: NVProf

Master:

22.75885 s

|=| Process "Isdalton.x" (14582)
|=| Thread 3128469952
~ Runtime API
- Driver API

[=] Markers and Ranges

- Default Domain

- Profiling Overhead

Worker:

_ Build_3CenterERI
ll_precalc_DECScreenMat I_GET_3... I_GE... I_GET_3... I_GET....

 |s_getintegral... Is_getintegral... Is_getint... m Is_getin... m

Build_3CenterERI call *..

] Il_precalc_DECScreenMat L b e et e =k O = s ok] e

lowdin_diag_S_minus_sqrt

lowdin_diag_S_minus_sqrt

 Is_getintegral... Is_getintegral... Is_getint... m Is_getin... m

[=] Process "Isdalton.x" (23789)
[=] Thread 3128469952
L Runtime API

L Driver API

|=] Markers and Ranges

- Default Domain

L Profiling Overhead

p... Is_mpibcast

% OAK RIDGE | giare

National Laboratory | FACILITY

|
Is_getl... Is_getl... ----

Build_3CenterERI
ll_precalc_DECS... 1_G...

|
s getl._lsgetl. | [| | |

atomic_fr...

Jtomic_fr...

Is_mpibcast

|

| Build_3C
[Il_precalc_DEC...
| Build_3
ll_precalc_DEC...
Is_get... Is_get...

Performance improvement: NVProf

Master:

22.75885 s

|=| Process "Isdalton.x" (14582)
|=| Thread 3128469952
L Runtime API
- Driver API

Build_3CenterERI callll... sqr omic_fr... Build_3C
[=| Markers and Ranges |l_precalc_DECScreenMat |1l GET_3... Il_GE... I_GET_3... Il _GET._... | | |I_precalc_DEC...
| .. Is_getintegral... s getint... | Is 9. |'Is getin... | Is_get!...|

Build_3CenterERI call *.. sqr Jtomic_fr...

Il_precalc_DE II_GET_3... lI_GE... lI_GET_3... Il_GET_...
ral... Is_getint...

et...
Build_3C

_ge 5
|_precalc_DEC
_ge 5

Is
l_|
Is_get... Is_get.

- Default Domain

- Profiling Overhead

~35-40% of master rank’s fime is spent in these dsyev and dgemm
calls.

As a first approach, port dgemm and dsyev calls to GPU via
cUBLAS and cuSOLVER. See how this affects idle communication

time

%OAK RIDGE
Nat

ional Laboratory

COMPUTING
FACILIT

Performance improvement: NVProf

518.72031 ms

346.5 s 47 s 3¢

: lowdin_diag_S_minus_sqrt

 For this test case, TTS reduced by >35% by porting just two
function calls fo GPU-accelerated libraries.

#.0AK RIDGE |G

ional Laboratory | FACILITY

Performance improvement: NVProf

« What about the fime we spent waiting in MPI_Bcast?

Total time Avg. time/node | Avg. time/call
(s, all nodes) (s) (s)

Before porting 4193 127.1 1.257
After porting 1383 41.9 0.415

Wait fime reduced by 67%!

#.0AK RIDGE |G

ional Laboratory | FACILITY

%OAK RIDGE

National Laboratory

Porting experience on
Summit: Results

LS-Dalton Benchmark Demonstration: RI-MP2 Calculations

Middle-size Examples ~1500 basis functions Large-size Example — Insulin: 4433 basis functions
Scaling up to 256 nodes: Scaling up to 4096 using GPUs:
STRONG SCALING STRONG SCALING
CPU

CPY, 3780

—_ 1.04E+04
CPU, 2940 _
cpy. CPU/GPU=22

GPU, 1740 4.73E+Q3 . .

| CPU, 1620 |deal linear scaling

\U up to 2096 nodes:
GP ;]&‘\P

U, 720 GPU -

64 128 256
Not enough work

Number of nodes
to demonstrate

GPU speedup between 2.2 and 2.9 — ideal linear scaling.
without cuSOLVER

%OAK RIDGE | L&Aperstip 1024 2048 4096
National Laboratory | FACILITY

Number of nodes

Acknowledgements

e Tjerk Straatsma
e LSDalton CAAR team () LEADERSHIP
- Dmytro Bykov % AK RIDGE COMPUTING
Yo By National Laboratory | FACILITY
y
— Dmitry Lyakh
e OLCF This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of
- Verdnica G. Melesse Vergara Science User Facility supported under Contract DE-AC05-
o 000R22725.
e Nvidia
- Steve Abboft
— Jeff Larkin
e [BM

— David Appelhans

%QAK RIDGE

ional Laboratory

LEADERSHIP
COMPUTING
FACILITY

