
ORNL is managed by UT-Battelle LLC for the US Department of Energy

CAAR Porting Experience on Summit:
LS-Dalton

Ashleigh Barnes

Summit Training Workshop

ORNL, Feb 13th, 2019

LS-Dalton: Overview

33

LS-Dalton
LS-Dalton (Linear Scaling Dalton) is open-source scientific software for electronic structure calculations. LS-
Dalton is developed at Aarhus and Oslo Universities as well as at ORNL. Most parts of LS-Dalton employ linear
scaling and massively parallel implementations, which makes it suitable for calculations on large molecular
systems, in particular when the calculations are carried out on large super computer architectures. In
particular Divide-Expand-Consolidate (DEC) scheme allows for linear-scaling Coupled Cluster Methods.

Key Features
Divide-Expand-Consolidate(DEC) models:
• DEC-MP2 energy, density and gradient, unrestricted

energy
• DEC-RI-MP2 energy and gradient, Laplace-Transformed

RI-MP2
• DEC-CCSD energy and gradient, unrestricted energy
• DEC-CCSD(T) energy

Computational details
• Languages: Fortran90, Fortran2003

• Runtime: MPI/OpenMP/OpenACC

Developers (CAAR TEAM)
Dmytro Bykov
Ashleigh Barnes
Dmitry I. Liakh
Poul Jorgensen
Thomas Kjaergaard
Patrick Ettenhuber
Janus Eriksen
Kasper Kristensen
Pablo Baudin
Philip Pawlowski
Yang Ming Wang

Full list of developers
hSp://daltonprogram.org

4

Achieving Linear Scaling

• Canonical coupled cluster
(CC) methods are limited by
poor scaling with system
size:
– MP2: N5

– CCSD: N6

– CCSD(T): N7

Age of
the man

Century

Year
Month

Day

Hour

Age of the
universe

5

Achieving Linear Scaling

• Divide-Expand-Consolidate
(DEC) scheme
– Local HF orbitals lead to natural

fragmentation of the system
– Correlation energy evaluated for

each fragment independently
– Multiple levels of parallelism P

Q S

Coarse Grained: Fragments calculated independently
Medium Grained: Each fragment calculation distributed
over multiple nodes (MPI)
Fine grained: Thread-level parallelism within each node
(OpenMP, OpenACC)

6

DEC Scheme

Ecorr =

NfragX

P

EP +

NfragX

Q<P

�EPQ

�

EP = tij
ab + ti

at j
b()

i∈P, j∈P
ab∈[P]

∑ 2giajb − gibja()

ΔEPQ = tij
ab + ti

at j
b()

i∈P, j∈Q
ab∈[P]∪[Q]

∑ 2giajb − gibja()+ P↔Q term

P = Occupied orbital space

[P] = Virtual orbital space

Performed at MP2 (RI-MP2) level

Porting experience on
Summit: Strategy

8

Porting Strategy

Targeting high-level directive-based porting to GPU: OpenACC
and GPU-optimized libraries.

– GPU offloading of FLOP-intensive parts of RI-MP2 module
using openACC and cuBLAS.
• Including Laplace-transformed RI-MP2 (more efficient

implementation)
– Increased dependence on parallel distributed memory

tensors via ScaTeLib library
• Allow for easy porting of tensor contractions to GPU via TAL-SH library

9

Dgemm

GPU-porting of RI-MP2 Module

cuBLAS
Memory managed with
OpenACC data regions

Focus attention on rate-determining step:
Construction of integrals !"#$% and amplitudes &#%"$

D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228–237 (2017)

10

Dgemm

GPU-porting of RI-MP2 Module

cuBLAS
Memory managed with
OpenACC data regions

Memory adaptive scheme:

• Tiny fragments: Limited by data transfer time. Full
algorithm performed on CPU.

• Small fragments: Not limited by data transfer or
memory. All steps performed on GPU.

• Large fragments: Memory limited. Steps 1-5, 7-9 on
GPU, step 6 on CPU.

• Huge fragments: Smallest intermediates can’t fit in
GPU memory. Use host cuBLAS calls, library
responsible for moving data to and from GPU as
needed.

Focus attention on rate-determining step:
Construction of integrals !"#$% and amplitudes &#%"$

D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228–237 (2017)

11

GPU-porting of RI-MP2 Module

D. Bykov and T. Kjaergaard, Journal of Computational Chemistry, 38, 228–237 (2017)

12

ScaTelib integration with TAL-SH library

• CC calculations require evaluation of tensor
contractions. Efficient handling of these contractions
is key to good performance of these modules.

• Currently utilizing ScaTeLib: a Scalable Tensor Library
in order to distribute tensor contractions across
multiple ranks via tiling.

• E.g.:

– A and B must be sorted appropriately: Aajlb ⇒ Ajlab, Bkbai ⇒ Babki

– Call dgemm
– Returns contribution to local C tile as Cjlki. Reorder ⇒ Cijkl and

add to local tile.

Cijkl = ↵
X

a,b

AajlbBkbai + �Cijkl

13

ScaTelib integration with TAL-SH library

• Handles sorting, no explicit reorder
calls necessary in ScaTeLib

• Asynchronous task scheduling

• Tasks are pipelined to overlap
computation and data transfer

• 2 active tasks per GPU at any
time

• Basic implementation provides ~10x
speedup on Summit

• 1 node: jsrun -n 6 -r 6 -a 1 -g 1 -c
7 -brs

• CPU version uses ESSL

• TAL-SH: Tensor Algebra Library for Shared-memory
systems. Integrated as backend for ScaTeLib.

GPU 0 GPU 1

GPU 2 GPU 3

H → D Compute D → H
H → D Compute D → H

H → D Compute D → H

Porting experience on
Summit: Lessons Learned

Compiling and
Debugging

15

Initial compilation and test runs

• Initial efforts on SummitDev

• Focused initially on PGI compilers due to need for extensive OpenACC
support

• We were able to compile with GPU support using PGI on Summit with little
trouble (once deprecated compiler flags were removed from cmake)
– Test runs experienced hangs or immediate crashes with “invalid free()” errors
– Crash was found to be caused by calling acc_init before mpi_init.
– Hangs were caused by overlapping OpenACC and OpenMP regions in one

subroutine. Solution was to remove OpenMP regions.

16

Challenges

• Wrong answers

• Random hangs with large node counts

17

Challenges

• Wrong answers
– Possibly a compiler issue, but was never isolated. This was fixed with

next compiler and software stack update (PGI/18.3).

• Random hangs with large node counts
– Only when using multiple threads
– Attached gdb debugger to each process – all but 3 were waiting in

MPI collectives. Remaining 3 were stuck in an OMP CRITICAL region
– Replacing OMP CRITICAL with OMP ATOMIC wherever possible fixed

the hanging problem

• Currently experiencing problems with GPU builds using PGI
versions later than 18.3
– Cublas handle corruption or segmentation faults at MPI calls

Porting experience on
Summit: Lessons Learned

Improving
Performance

19

Performance improvement: optimizing jsrun options

• 6 RS/node: 1 GPU/RS
– CC calculations are

extremely memory intensive.
Balance GPU usage and
memory/rank by using 1 MPI
rank/GPU

– For our code, SMT1 > SMT2 >
SMT4. SMT4 with 28 OMP
threads/rank was about 2x
as slow as SMT1 with 7 OMP
threads per rank.
• SMT2 with 14 threads was slightly

slower than SMT1

Example: jsrun -n 24 -r 6 -a 1 -g 1 -c 7 -brs ./lsdalton.x

20

Performance improvement: NVProf

Instrument code with nvtx custom ranges (used nvtx_mod.F90
from David Appelhans, IBM: https://github.com/dappelha/gpu-
tips.git)

• Where are we wasting time?

• What routines can be easily ported to the GPU (e.g. via
libraries)?

https://github.com/dappelha/gpu-tips.git

21

Performance improvement: NVProf

• Where are we wasting time?
• What routines can be easily ported to the GPU (e.g. via

libraries)?

22

Performance improvement: NVProf

Master:

Worker:

23

Performance improvement: NVProf

• Where are we wasting time?

• What routines can be easily ported to the GPU (e.g. via
libraries)?

24

Performance improvement: NVProf

Master:

Worker:

dgemm

25

Performance improvement: NVProf
Master: dgemm

~35-40% of master rank’s time is spent in these dsyev and dgemm
calls.

As a first approach, port dgemm and dsyev calls to GPU via
cuBLAS and cuSOLVER. See how this affects idle communication
time

26

Performance improvement: NVProf

• For this test case, TTS reduced by >35% by porting just two
function calls to GPU-accelerated libraries.

27

Performance improvement: NVProf

• What about the time we spent waiting in MPI_Bcast?

Wait time reduced by 67%!

Total time
(s, all nodes)

Avg. time/node
(s)

Avg. time/call
(s)

Before porting 4193 127.1 1.257

After porting 1383 41.9 0.415

Porting experience on
Summit: Results

29

Middle-size Examples ~1500 basis functions
Scaling up to 256 nodes:

Large-size Example – Insulin: 4433 basis functions
Scaling up to 4096 using GPUs:

GPU, 1740

GPU, 1020

GPU, 720

1740

870

435

CPU, 3780

CPU, 2940

CPU, 1620

3780

1890

945

64 128 256

Number of nodes

GPU speedup between 2.2 and 2.9 –
without cuSOLVER

GPU -
4.73E+03

GPU -
2.37E+03 1.78E+03

1024 2048 4096

Number of nodes

Ideal linear scaling
up to 2096 nodes:

Not enough work
to demonstrate
ideal linear scaling.

CPU
1.04E+04

CPU/GPU = 2.2

LS-Dalton Benchmark Demonstration: RI-MP2 Calculations

30

Acknowledgements

• Tjerk Straatsma

• LSDalton CAAR team
– Dmytro Bykov
– Dmitry Lyakh

• OLCF
– Verónica G. Melesse Vergara

• Nvidia
– Steve Abbott
– Jeff Larkin

• IBM
– David Appelhans

This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-
00OR22725.

