Practical Tips for Running on SUMMIT

David Appelhans

ORNL SUMMIT Training Workshop
Feb 11, 2019

D. Appelhans Practical Tips for Running on SUMMIT

OUTLINE

e Talk is a collection of hands on experience in readying applications for SUMMIT.

Lightweight MPI profiler.

Useful jsrun/MPI flags.

LSF+jsrun example submission scripts
o 1 rank per socket, core, or GPU example scripts.
e Using multiple ranks per GPU with MPS.

Profiling of 1 rank with nvprof at scale.

Checking on job submission
e Useful Isf commands.
¢ ssh to compute node, get stack traces, nvidia smi.

D. Appelhans Practical Tips for Running on SUMMIT

MPI profiler

BEST PRACTICE: LIGHTWEIGHT MPI TRACING

A lightweight MPI tracing library can easily be linked against at runtime'.
¢ No performance penalty—we ran this library with all CORAL benchmarks during
acceptance.
e Very useful in identifying node imbalance at scale.

e How to use it
e Official version shipped with SMPI:

export OMPI_LD_PRELOAD_POSTPEND=$OLCF_SPECTRUM_MPI_ROOT/lib/libmpitrace.so

It writes several profile files with format of mpi_profile.jobid.rank

"Vampire is another available profiling tool

D. Appelhans Practical Tips for Running on SUMMIT

MPI pr

message size, etc.

USING THE MPI PROFILER
Can see where time is spent, calculate achieved communication bandwidth, average

MPI Routine calls
MPI_Comm_rank 320850
MPI_Comm_size 4
MPI_Isend 84
MPI_Send_init 168
MPI_Recv_init 168
MPI_Irecv 84
MPI_Wait 3672
MPI_Waitall 42
MPI_Start 3588
MPI_Bcast 24
MPI_Barrier 411
MPI_Reduce 1
MPI_Allreduce 696
MPI_Gather 1
MPI_Gatherv 2

total communication time = 61.108 seconds.
total elapsed time =239.719 seconds.
user cpu time =2211.329 seconds.
system time = 372.080 seconds.
max resident set size = 37583.938 MBytes.

0.0

0.0
540688.0
8404992.0
8404992.0
540688.0

0.0

0.0

0.0

372

0.0

time(sec)

D. Appelhans

s for Running on S

MPI profiler

IDENTIFYING WORK IMBALANCE

Ranks taking the most time in computation spend the least amount of time in MPI calls
because all other ranks have been waiting for them. Example rank 0 output info:

Histogram of times spent in MPI Histogram of times spent in MPI (Balanced Run)
time—bin ranks time—bin ranks
30.231 1 <=Rank deserving closer look 18.413 1
32.611 0 19.261 1
34.991 0 20.110 1
37.371 0 20.958 9
39.751 1 21.807 28
42.131 1 22.655 38
44.511 1 23.504 30
46.891 6 24.352 48
49.271 55 25.201 39
51.651 261 26.049 26
54.030 264 26.898 17
56.410 188 27.746 11
58.790 67 28.595 3
61.170 15 29.444 3
63.550 4 30.292 1

D. Appelhans ra ips for Running on SUMMIT

MPI profiler

USING THE MPI PROFILER

Rank 0 summary file also provides rank to node correlation:

MPI timing summary for all ranks:

taskid hostname cpu comm(s)
290 sierra3358 88 52.04
291 sierra3358 128 52.29
292 sierra3800 0 43.48
293 sierra3800 40 30.23
294 sierra3800 88 54.34
295 sierra3800 128 51.69

D. Appelhans ra Tips for Running on SUMMIT

Useful jsrun flags

USEFUL JSRUN FLAGS

e Send kill signal to processes on a MPI failure (helps kill your job instead of hanging
it).

jsrun —X 1 <further commands>

e Prepend the rank id to the output

jsrun ——stdio_mode prepended

e If Spectrum MPI arguments are needed (e.g. async argument when using 1-sided
communication)

jsrun ——smpiargs="—async"

D. Appelhans Practical Tips for Running on SUMMIT

Example Submission Scripts

EXAMPLE SUBMISSION SCRIPTS

e ORNL training material is very good (link + visualizer).

e Using scripts for Isf job submission and jsrun configuration allows repeatable
experiments.

e See talk by Chris Fuson for detailed explanation of Isf and jsrun.

e Key to jsrun is deciding what a resource set will represent (e.g. 1 rs per socket, or per
GPU).

¢ The following are some examples of common use cases. Links to full submission
scripts are on each page.

D. Appelhans Practical Tips for Running on SUMMIT

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/
https://jsrunvisualizer.olcf.ornl.gov/index.html

1 RANK PER CORE (CLICKABLE LINK)

nodes=1

gpus_per_socket=3 # number of gpus to use per socket

application_cores =21 # cores available to the application per socket
threads_per_core =4 # Each core can go up to smt4 for 4 hardware threads .

user sets rank_per_socket, calculate other quantities from this :
ranks_per_socket=21 # needs to be evenly divisible by gpus_per_socket (if using GPUs)

calculated from input:

let num_sockets=2x$nodes

let cores_per_rank= $application_cores / $ranks_per_socket # avail cores divided into the ranks.
let cores_per_socket=$cores_per_rank=*$ranks_per_socket # this is used cores per sockel (not
necessarily equal to application cores

let threads_per_rank =$threads_per_core *$cores_per_rank

... LSF submission stuff ...

jsrun — —stdio_mode=prepend —D CUDA_VISIBLE_DEVICES \
—E OMP_NUM_THREADS=${threads_per_rank} \
— —nrs ${num_sockets} \
— —tasks_per_rs ${ranks_per_socket} \
— —cpu_per_rs ${cores_per_socket} \
— —gpu_per_rs ${gpus_per_socket} \
— —bind=proportional — packed:${cores_per_rank} \
—d plane:${ranks_per_socket} \
./ print — affinity .sh

Appelhans

https://github.com/dappelha/summit-scripts/blob/master/rank-per-core.sh

1 RANK PER GPU (CLICKABLE LINK)

nodes=1

gpus_per_socket=3 # number of gpus to use per socket (3 for summit, 2 for sierra)

gpus_per_rs=1 # 1 res set per GPU (one to one gpu to rs mapping).

threads_per_core =2 # Each core can go up to smt4 for 4 hardware threads .
ranks_per_rs=1 # If using more than 1 rank per gpu, need to enable

derived quantities :

let rs_per_socket=$gpus_per_socket/$gpus_per_rs

let ranks_per_socket=$ranks_per_rs*Srs_per_socket
There are 21 (of 22) cores available to the application per socket (on Summit)
cores_per_rank=21/$ranks_per_socket # 21 avail cores divided into the ranks.
cores_per_rs =$cores_per_ranks$ranks_per_rs

let
let
let
let

nrs=2x$rs_per_socketx$nodes # total number of resource sets :

threads_per_rank =$threads_per_core *$cores_per_rank

... LSF submission stuff ...

jsrun — —stdio_mode=prepend —D CUDA_VISIBLE_DEVICES \

—E OMP_NUM_THREADS=${threads_per_rank} \
— —nrs ${nrs} — —tasks_per_rs ${ranks_per_rs} \
— —cpu_per_rs ${cores_per_rs} \

— —gpu_per_rs ${gpus_per_rs} \

— —bind=proportional — packed:${cores_per_rank} \

—d plane:${ranks_per_rs}
./ print — affinity .sh

\

mps through 1Isf .

Appelhans

10/17

https://github.com/dappelha/summit-scripts/blob/master/rank-per-gpu.sh

SHARING GPU AMONG 2 RANKS CLICK FOR FULL EXAMPLE

Must enable MPS in Isf

One resource set per GPU, multiple tasks per resource set. submission?:

gpus_per_socket=3 # number of gpus to use per socket (3 for summit, 2 for sierra) #BSUB -alloc_flags gpumps

gpus_per_rs=1 # 1 res set per GPU (one to one gpu to rs mapping).

threads_per_core=4 # Each core can go up to smt4 for 4 hardware threads .

ranks_per_rs=2 # If using more than 1 rank per gpu, need to enable mps through Isf.

derived quantities : Jsrun — —stdio_mode=prepend —D

let rs_per_socket=$gpus_per_socket/$gpus_per_rs CUDA*VISIBLE*DEVICFS \

let ranks_per_socket=S$ranks_per_rsx$rs_per_socket —E OMP_NUM_THREADS=S${threads_per_rank} \
There are 21 (of 22) cores available to the application per socket (on Summit) ——nrs ${nrs} \

let cores_per_rank=21/$ranks_per_socket # 21 avail cores divided into the ranks. — —tasks_per_rs ${ranks_per_rs} \

let cores_per_rs=$cores_per_ranks*S$ranks_per_rs — —cpu_per_rs ${cores_per_rs} \

let nrs=2x*$rs_per_socketx$nodes # total number of resource sets : T spuperrs $.(gpus_per_rs} \

let threads_per_rank =$threads_per_core *$cores_per_rank — —bind=proportional —packed:${cores_per_rank} \

—d plane:${ranks_per_rs} \
./ print — affinity .sh

21f specifying multiple flags, must do it in one line. e.g. #BSUB -alloc_flags “smt2 gpumps*

Appelhans

https://github.com/dappelha/summit-scripts/blob/master/rank-per-core.sh

Checking on jobs

CHECKING ON YOUR SUBMISSION

e bjobs will show a list of your current jobs and their status.
e To check pending reason of a specific job, bjobs -p <jobid>
e s the que busy/open? bqueues

[dappelh@login5.summit]$ bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
test 5 Open:Inact 45 - - = 0 0 0 0
storage 4 Open:Inact - - - = 0 0 0 0
tested 3 Open:Active - - - - 0 0 0 0
new 2 Open:Inact - - — — 43 43 0 0
batch 1 Open:Active - - = = 8 0 85 0

e What jobs are scheduled on the machine? bjobs -u all

[dappelh@loginl.summit]$ bjobs —u all
JOBID USER STAT SLOTS QUEUE START_TIME FINISH_TIME JOB_NAME

220841 bykov RUN 86017 batch Nov 28 14:15 Nov 29 02:15 Isdalton
220932 jaharris RUN 43 batch Nov 28 17:37 Nov 28 18:07 Not_Specified
220933 ngawande RUN 2017 batch Nov 28 17:40 Nov 28 19:40 d48_c

220908 chochia PEND — tested — — Not_Specified
220926 chochia PEND — tested — — Not_Specified

D. Appelhans ractical Tips for Running on SUMMIT

Checking on jobs

CHECKING ON A RUNNING JOB

e bpeek will show you tail of standard out and standard error (jobid is optional):

bpeek <jobid> | less

e Something seems wrong, can I check into a job further?

bjobs —WP <jobid> | less

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME %COMPLETE
220933 ngawand RUN batch loginl batchl d48_c Nov 28 17:40 32.62% L

g36n12

g36n12

e Can ssh to a compute node (only while job is running)

ssh g36n12

D. Appelhans ra Tips for Running on SUMMIT

hecking on jobs

TROUBLESHOOTING A JOB ON A COMPUTE NODE
e Use gstack to get call stack of each thread (use top to get pid)

gstack <pid>

e See if the GPUs have something currently running:

nvidia —smi

Example idle GPUs:

| NVIDIA-SMI 396.58 Driver Version: 396.58 |
| ; ;

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap] Memory-Usage | GPU-Util Compute M. |
| t t |
| 0 Tesla V100-SXM2... On | 00000004:04:00.0 Off | 0 |
| N/A 34C PO 36W / 300W | OMiB / 16128MiB | 0% E. Process |
B -+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |

| No running processes found |

D. Appelhans ractical Tips for Running on SUMMIT

Nvprof at scale

PROFILING AT SCALE

¢ Running nvprof on every rank of a large scale job will slow to a crawl.

e However, profiling just one of the ranks at scale with nvprof/visual profiler is possible.

cxxRadtr

i | svarcer]| 1 Bl i | TR T R
| e errrnrer e eme e rrrer e rrrre | [l
| N R | M i
FmmmmdibEATIY DTN B s
TECHIIET M T ey e eywrere \ NRINNATA R

o See talk later this week on detailed usage of nvprof and visual profiler as well as
Score-P/Vampire.

D. Appelhans Practical Tips for Running on SUMMIT

SCRIPT FOR 1 RANK TO LAUNCH NVPROF

Have jsrun launch this script which executes profiler+application if rank matches profile
rank, otherwise just launches application without profiling:

export PROFILE_RANK=1
export PROFILE_PATH="/gpfs/path_to_your_directory"
jsrun <flags> profile_helper.sh a.out

Contents of profile_helper.sh:

#!/bin/bash

if [$PMIX_RANK == $PROFILE_RANK]; then
nvprof —f —o $PROFILE_PATH "$@"

else
Vl$ @ "

fi

D. Appelhans ra ips for Running on SUMMIT

Closing Remarks

CLOSING REMARKS

Hopefully you have learned how to
e Use the lightweight mpi profiler even if not focusing on MPI performance.
e Use scripts for Isf/jsrun submissions.
e Check on your job submission after submitting.

e Launching a profiler at scale on a single MPI rank.

Questions?
David Appelhans - dappelh@us.ibm.com

Github script location: https://github.com/dappelha/summit-scripts

D. Appelhans Practical Tips for Running on SUMMIT

https://github.com/dappelha/summit-scripts

	Outline
	MPI profiler
	Useful jsrun flags
	Example Submission Scripts
	Checking on jobs
	Nvprof at scale
	Closing Remarks

