
ORNL is managed by UT-Battelle
for the US Department of Energy

CAAR Porting Experience:
FLASH

J. Austin Harris

Scientific Computing Group
Oak Ridge National Laboratory

2 J. Austin Harris --- Summit Workshop --- 2019

FLASH code

• Component-based, MPI+OpenMP parallel, adaptive mesh
refinement (AMR) code supporting:
– Directionally unsplit hydrodynamics
– Multipole gravity solver
– Nuclear burning network
– Stellar equation of state
– Turbulent flame interaction model

• The code has been used to simulate a variety of phenomena:
– thermonuclear and core-collapse supernovae
– galaxy cluster formation
– classical novae
– formation of proto-planetary disks
– high-energy-density physics

3 J. Austin Harris --- Summit Workshop --- 2019

FLASH AMR
• Currently uses octree-based PARAMESH (MacNeice+, 2000)

• Moving to ECP-supported AMREx

4 J. Austin Harris --- Summit Workshop --- 2019

Nuclear kinetics

(p,γ)

(p,γ)

(p,γ)

(p,α) β+

β
+

12
C

13
C

15
O

13
N

15
N

14
N

Main cycle
6

6

7 8 9

7

8

9

Neutron Number

P
ro

to
n
 N

u
m

b
e
r

C
12

C
13

C
14

C
15

N
13

N
14

N
15

N
16

O
14

O
15

O
16

O
17

F
15

F
16

F
17

F
18

• Reaction network described by:

! "# = %"#
%& =

'
(
)#(*("(

+'
(,-

)#(,-./0 12 (,-"("-

+'
(,-,3

)#(,-,3.2/02 12 (,-,3"("-"3 + ⋯

5 J. Austin Harris --- Summit Workshop --- 2019

A digression about stiffness
• Practically, stiff if stepsize ℎ set by

numerical stability from large variations in
timescales

• Formally, system of equations stiff if
Jacobian obeys

" = max ℜ ()
min ℜ ()

≫ 1

• " > 1001 not uncommon in astrophysics
• Two approaches:

1. Remove stiffness, relax timestep constraints
2. (Semi-)implicit numerical integration

y t

yn

-yn

0

+

-

2yn

()

∆y
1/k

(n+1, yn+1)
Instabilit

zone

2/k

h
t

y

d
t = -ky

d
y

/ t

(tn+1, yn+1)exact

Small, fast
component

Large, slow
components(t , y)n n

0.10.0 0.05

h = 0.015

2

-2

1

0

-1

0.1 0.150.0 0.05

h = 0.020 = 2/k

10

-10

-20
0.05 0.15 0.2

20

0

0.10.0

Time

h = 0.03

Exact
Forward Euler

0.04

2

0.0
-2

1

0.02 0.06

0

-1

y
(t

)

2

-2

1

0

-1

h = 0.008

6 J. Austin Harris --- Summit Workshop --- 2019

Reaction networks
 13 Isotopes
 59 Rates
61.5% Sparse
Flows (#/sec):
 4.15E+09
 3.18E+07
 2.43E+05
 1.86E+03
 1.43E+01
 -9.16E+00
 -1.20E+03

 -1.56E+05
 -2.04E+07

 -2.67E+09
 -3.49E+11

N P

N
P

 47 Isotopes
 279 Rates
75.3% Sparse
Flows (#/sec):
 1.85E+14
 1.35E+11
 9.77E+07
 7.09E+04
 5.15E+01
 -2.67E+01
 -3.68E+04
 -5.07E+07
 -6.98E+10
 -9.62E+13
 -1.32E+17

NP

N
P

 200 Isotopes
2134 Rates
91.9% Sparse
Flows (#/sec):
 1.85E+14
 1.34E+11
 9.75E+07
 7.07E+04
 5.13E+01
 -2.69E+01
 -3.70E+04
 -5.10E+07
 -7.03E+10
 -9.69E+13
 -1.34E+17

(n,a)

(_,p)
(_,a)

(_,n)(p,a)
(p,n)

(a,p)

(p,_)
(a,_)

(n,_)

(a,n)

(n,p)

Number of
evolved species

Big Bang
nucleosynthesis

Stellar
evolution

Supernovae
(ECSN)

X-ray
bursts

Neutron-star
Mergers

Supernovae
(CCSN)

Supernovae
(TNSN)

Physical fidelity
FLOPS
Sparsity

10 1,000100

8 J. Austin Harris --- Summit Workshop --- 2019

XNet

• Stand-alone code for evolving arbitrary reaction networks
• Originally designed to independently evolve particles/zones (SPMD)

– Minimal overhead for CPU shared-memory parallelism
– Unfortunately, not ideal for GPU

• FLASH CAAR project:
– Replace small “hard-wired” reaction network in FLASH with XNet interface

and use programming model centered around GPU-optimized libraries

9 J. Austin Harris --- Summit Workshop --- 2019

XNet
• Implicit solver for stiff system of ODEs

– Backward Euler (first-order):

! − ℎ$ Δ&[(] = ℎ+ &,-.
(+ &,-.

0 − &,-.
(

– Added variable-order BDF (Gear+ 1971):
• Motivated by results of Longland+ (2014)
• Idea: Use past behavior to predict solution
• Predictor step:

1, = &,, ℎ&̇,, ℎ4&̈,, … ,
ℎ7&,

(7)

:!
,

1,-.
0 = 1,< : , < : ≡ Pascal matrix

• Corrector step:
! −

ℎ
H.
$ Δ&[(] =

ℎ
H.
+ &,-.

0 − + &,-.
(+ &,-.

0 − &,-.
(

Fewer number of steps to converge
– Faster time to solution
– Better load balancing

Typical ∆JKLMNO for SN sim

10 J. Austin Harris --- Summit Workshop --- 2019

XNet in FLASH
• FLASH burner restructured to operate on multiple zones at once from all local

AMR blocks for XNet to evolve simultaneously

!$omp parallel shared(…) private(…)
!$omp do
do k = 1, num_zones

do j = 1, num_timesteps
<build linear system>
dgetrf(…)
dgetrs(…)
<check convergence>

end do
end do
!$omp end do
!$omp end parallel

!$omp parallel shared(…) private(…)
!$omp do
do k = 1, num_local_batches

do j = 1, num_timesteps
<CPU operations>
!$acc parallel loop
do ib = 1, batch_size

<build ib’th linear system>
end do
!$acc end parallel loop
<send system to GPU>
cublasDgetrfBatched(…)
cublasDgetrsBatched(…)
<send results to CPU>
<check convergence>

end do
end do
!$omp end do
!$omp end parallel

11 J. Austin Harris --- Summit Workshop --- 2019

XNet in FLASH
• Fortran data structures
Real(dp), Pointer :: jac(:,:,:) ! CPU data (pointers for pinned memory)
Type(C_PTR) :: hjac ! C pointers for pinned memory
Type(C_PTR) :: djac ! Device pointers for arrays
Integer(C_INTPTR_T), Pointer :: djacf(:,:,:)
Type(C_PTR), Allocatable, Target :: djaci(:) ! Arrays of pointers to each device array batch element address
Type(C_PTR) :: hdjac_array, djac_array ! Host and device addresses for the arrays of device pointers

! Allocate CPU memory (pinned for asynchronous host<->device copy)
istat = cudaHostAlloc(hjac, sizeof_jac, cudaHostAllocDefault)
Call c_f_pointer(hjac, jac, (/msize,msize,nzbatchmx/))

istat = cudaMalloc(djac, msize*msize*nzbatchmx*sizeof_double) ! Allocate GPU memory for arrays
Call c_f_pointer(djac, djacf, (/msize,msize,nzbatchmx/)) ! Setup fortran pointers to device-addresses of device arrays

! Setup arrays of pointers to each device array batch element address
Allocate (djaci(nzbatchmx))
do i = 1, nzbatchmx

djaci(i) = c_loc(djacf(1,1,i)) ! Get the device-addresses for this batch element
end do
hdjac_array = c_loc(djaci(1)) ! Get the host-addresses for the arrays of device-pointers

! Allocate GPU memory for batched GPU operations and copy array of pointers to device
istat = cudaMalloc(djac_array, nzbatchmx*sizeof_cptr)

...

! Copy the system to the GPU
istat = cublasSetMatrixAsync(msize, msize*nzbatchmx, sizeof_double, hjac, msize, djac, msize, stream)

12 J. Austin Harris --- Summit Workshop --- 2019

FLASH Performance w/ Xnet
Single node tuning
• Tests performed on single Summit Phase I node

– 2 IBM Power9 (22 cores each), 6 NVIDIA “Volta” V100 GPUS

• 1 3D block (163 = 4096 zones) per rank per GPU evolved for 20 FLASH timesteps

13 J. Austin Harris --- Summit Workshop --- 2019

FLASH AMR Optimization
• Problem: Computational load can be

quite unevenly distributed

• Solution: Weight the Morton space-
filling curve average number of
burning steps per block
– ~1.5x speedup at scale

14 J. Austin Harris --- Summit Workshop --- 2019

FLASH AMR Optimization

15 J. Austin Harris --- Summit Workshop --- 2019

FLASH scaling results
• Real physics problem:

– Centrally detonated white dwarf with 231
species

– Nearly ideal weak scaling to ~1000 nodes

16 J. Austin Harris --- Summit Workshop --- 2019

Other CAAR Work

• Other FLASH developments for CAAR:

– GPU equation of state (Tom Papatheodore)

– Non-blocking communications in gravity solver (Hannah Klion)

17 J. Austin Harris --- Summit Workshop --- 2019

Questions?

