
© 2018 Arm Limited

Nick Forrington <nick.forrington@arm.com>
6th December 2018

Debugging with
Arm DDT

Summit Training Workshop

2 © 2018 Arm Limited

Welcome to the age of machine-scale computing
It’s dangerous to go alone! Take this.

30 years ago: human-scale computing Today: machine-scale computing

Cray 2 Summit

3 © 2018 Arm Limited

Arm’s solution for HPC application development
Commercial tools for aarch64, x86_64, ppc64le and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP
FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

4 © 2018 Arm Limited

Arm’s solution for HPC application development
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

DDT MAP
FORGE

PERFORMANCE
REPORTS

5 © 2018 Arm Limited

Arm Forge = DDT + MAP
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

6 © 2018 Arm Limited

DDT: Production-scale debugging
Isolate and investigate faults at scale

• Which MPI rank misbehaved?
• Merge stacks from processes and threads
• Sparklines comparing data across processes

• What source locations are related to the problem?
• Integrated source code editor
• Dynamic data structure visualization

• How did it happen?
• Parse diagnostic messages
• Trace variables through execution

• Why did it happen?
• Unique “Smart Highlighting”
• Experiment with variable values

7 © 2018 Arm Limited

DDT: Feature Highlights
Switch between

MPI ranks and
OpenMP threads

Display pending
communications

Visualise arrays

Detect memory
leaks

8 © 2018 Arm Limited

Multi-dimensional Array Viewer
What does your data look like at runtime?

• View arrays
• On a single process

• Or distributed on many ranks

• Use metavariables to browse the array
• Example: $i and $j

• Metavariables are unrelated to the variables in your

program.

• The bounds to view can be specified

• Visualise draws a 3D representation of the array

• Data can also be filtered
• “Only show if”: $value > 0 for example $value being

a specific element of the array

9 © 2018 Arm Limited

Arm DDT at ORNL

• Machines
• Summit
• Titan

• Wombat
• Your laptop

• Eos, Rhea, …

• User Guide
• https://www.olcf.ornl.gov/software_package/forge/

https://www.olcf.ornl.gov/software_package/forge/

10 © 2018 Arm Limited

Arm DDT cheat sheet
Start DDT interactively, remotely, or from a batch script.

• Load the environment module:

• $ module load forge

• Prepare the code:

• $ mpicc -O0 -g myapp.c -o myapp.exe
• $ mpif90 -O0 -g myapp.f -o myapp.exe

• Start DDT in interactive mode (X11):

• $ ddt jsrun -n 8 … ./myapp.exe arg1 arg2 …

• Or use reverse connect:

• Connect the remote client (or launch “ddt” on the login node)

• Run the follow command, or edit a job script and submit:

– $ ddt --connect jsrun -n 8 ./myapp.exe arg1 arg2 …

• Offline mode

• $ ddt --offline jsrun -n 8 ./myapp.exe arg1 arg2 … (see ddt --help for more options)

11 © 2018 Arm Limited

Working with the batch system

• Connect the remote client to remote system
• Interactive job

• bsub -P <account> -W 20 -nnodes 1 -Is $SHELL
• Or edit job script
• module load forge
• Launch jsrun command prefixed with “ddt --connect”

• ddt --connect jsrun –n … ./myapp.exe
• The “ddt --connect” command will connect to the existing remote client

• Launch jsrun command prefixed with “ddt --offline”
• DDT will run non-interactively

12 © 2018 Arm Limited

Launching the Forge Remote Client
The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
• h;ps://developer.arm.com/products/so@ware-development-tools/hpc/downloads/download-arm-forge

• Searching for “Arm Forge Download” will typically take you here ⬆
• h;ps://www.olcf.ornl.gov/tutorials/forge-remote-client-setup-and-usage/

Connect to the cluster with the remote client
• Open Forge Remote Client
• Create a new connecHon: Remote Launch è Configure è Add

– Hostname: <username>@summit.olcf.ornl.gov
– Remote installaHon directory: /sw/xk6/forge/18.3

§ You can also get the above path by: module load forge/18.3; echo $DDT_HOME
• Connect!

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://www.olcf.ornl.gov/tutorials/forge-remote-client-setup-and-usage/

13 © 2018 Arm Limited

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs.

• You can run the debugger in non-interactive mode
• For long-running jobs
• For automated testing, continuous integration…
• No GUI setup required

• To do so, use the following arguments:
• $ ddt --offline --output=report.html aprun ./myapp.exe

• --offline enable non-interactive debugging
• --output specifies the name and output of the non-interactive debugging session

• Html
• Txt

• Add --mem-debug to enable memory debugging and memory leak detection
• Add --break-at=<location> to report stacks and variables at certain locations
• Add --trace-at=<location>,variable1,variable2 to evaluate variables/expressions at certain

locations
• See --help for more information

14 © 2018 Arm Limited

Offline Log
Snippet from a crash log

© 2018 Arm Limited

Debugging
Quick Examples

Crash and Hang

16 © 2018 Arm Limited

C = A x B + C
Simply multiply and add two matrices

Algorithm

1. Rank 0 (R0) ini@alises matrices A, B & C

2. R0 slices the matrices A & C and sends
them to Rank 1…N (R1+)

3. R0 and R1+ perform the mul@plica@on

4. R1+ send their results back to R0
5. R0 writes the result matrix C to file

R0

R1

RN

17 © 2018 Arm Limited

Example
• Crash -> Hang -> Fixed
• Determine the location of an issue in the source code

•Offline
• Remote Client

• Attach to existing jobs

© 2018 Arm Limited

Nick Forrington <nick.forrington@arm.com>
6th December 2018

Arm MAP &
Performance Reports

Summit Training Workshop

19 © 2018 Arm Limited

Arm Forge = DDT + MAP
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

20 © 2018 Arm Limited

MAP: Production-scale application profiling
Iden1fy bo6lenecks and rewrite code for be6er performance

• Run with the representative workload you started with

Examples:
$> map --profile jsrun –n 6 ./example

21 © 2018 Arm Limited

How MAP is different
MAP’s flagship feature is lightweight, highly scalable performance profiling

Adaptive
sampling

Sample
frequency

decreases over

time

Data never
grows too much

Run for as long
as you want

Scalable
Same scalable

infrastructure as
Allinea DDT

Merges sample
data at end of

job

Handles very
high core

counts, fast

Thread
profiling

Core-time not
thread-time

profiling

IdenJfies lost
compute Jme

Detects
OpenMP issues

Integrated Part of Forge
tool suite

Users can add
custom metrics

Profiling within
your code

22 © 2018 Arm Limited

What’s new in MAP (18.3)

• Launch scalability improvements with jsrun

• Support to identifying host-side OpenMP regions with PGI and IBM compilers (GCC

already supported)

• Stack unwinding improvements on POWER9

• Initial support for performance counters on POWER9

• Coming in 19.0: Python profiling

23 © 2018 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)Relevant advice

to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

24 © 2018 Arm Limited

Arm Performance Reports
A high-level view of application performance with “plain English” insights

25 © 2018 Arm Limited

Arm Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report.

MulA-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

26 © 2018 Arm Limited

Arm MAP and Performance Reports at ORNL

• Machines
• Summit
• Titan

• Wombat
• Your laptop

• Eos, Rhea, …

• User Guides
• https://www.olcf.ornl.gov/software_package/forge/

• https://www.olcf.ornl.gov/software_package/arm-

performance-reports/

https://www.olcf.ornl.gov/software_package/forge/
https://www.olcf.ornl.gov/software_package/arm-performance-reports/

27 © 2018 Arm Limited

Arm MAP cheat sheet
Generate profiles and view offline

• Load the environment module
• $ module load forge

• Prepare the code
• $ mpicc -O3 … -g myapp.c -o myapp.exe
• $ mpif90 -O3 … -g myapp.f -o myapp.exe

• Interactive (Collect and View)
• $ map jsrun –n8 … ./myapp.exe arg1 arg2

• Offline: edit the job script to run Arm MAP in “profile” mode
• $ map --profile jsrun –n8 … ./myapp.exe arg1 arg2

• View profile in MAP:
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)

28 © 2018 Arm Limited

Arm Performance Reports cheat sheet
Generate text and HTML reports from applica<on runs or MAP files

• Load the environment module:
• $ module load perf-reports

• No need to prepare application
• Run the application:

• perf-report jsrun -n 8 … ./myapp.exe
• … or, if you already have a MAP file:

• perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
• Analyze the results

• $ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
• $ firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

29 © 2018 Arm Limited

Profiling a subset of your program with MAP

• Easiest method
• --start-after=x
• --stop-after=x

• More precise
• allinea_start_sampling();
• allinea_stop_sampling();

• Not often required (due to adaptive sampling), but some times useful – e.g.
• Exclude lengthy I/O phase at start of program

• Have MAP terminate repetitive program early to save time/resources

© 2018 Arm Limited

MAP &
Performance Reports

Quick Examples

Thank You
Danke
Merci
��

�����
Gracias

Kiitos
감사합니다

ध"यवाद
 رکشت

© 2018 Arm Limited

