™

J

CUDA AWARE MPI

®

-
<A NVIDIA

& CUDA IPC

Steve Abbott, OLCF User Conference Call, January 2018

What is GPU Direct?
CUDA Aware MPI
d { On Node C ..

nnnnnnn

SUMMIT NODE
OVERVIEW

SUMMIT NODE

(2) IBM POWERY + (6) NVIDIA VOLTA V100

135 GB/s 135 GB/s

NVLink2 s (50 GBIs) 4 (900 GBYs)

wn

]

O |ow DRAM DRAM
*S™IGS| [| 2808 || 2668

[m)]

HBM

16 GB
QOOIGB!‘S

GPU

7TF

w w
@ o o @
50 GB/s o o) © 50GBIs
o o
Iy Ty] Te] Tp]
o ©
(7] 64 (7]
2 ol 8 |5. GB/s o ol 8 (S 2
UNDER THE HOOD 2| | BE[eBE [L B8 | 2
Ty] - 8 .. - 8 Ty]

[4)]
o
® |
©
w
50 GB/s
\"
o1 °
7
®Ggy;
50 GB/s

50 GB/s
Many connections 7 &
Ly |30 | 2|2t | e = | |20 | 2| 2| |
Many devices Te| g |0~ Z Te|l g |O~
[=7] [w2]
6.0 GB/s Read
2.2 GB/s Write
TF 42 TF (6x7 TF) -4+—p HBM/DRAM Bus (aggregate B/W)
HBM 96 GB (6x16 GB) -#—p= NVLINK
DRAM 512 GB (2x16x16 GB) -4—p X-Bus (SMP)
NET 25 GB/s (2x12.5 GB/s) PCle Gen4
MMsg/s 83 -4—» EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, IB) are bi-directional.

GPUDIRECT

NVIDIA GPUDIRECT™

Accelerated Communication with Network & Storage Devices

GPU1 GPU2
Memory Memory

= B

GPU
1

PCl-e/NVLINK

NVIDIA GPUDIRECT™

Peer to Peer Transfers

GPU1 GPU2
Memory Memory

PCl-e/NVLINK

NVIDIA GPUDIRECT™

Support for RDMA

GPU2

PCl-e/NVLINK

CUDA AWARE MPI
FOR ON AND OFF
NODE TRANSFERS

REGULAR MPI GPU TO REMOTE GPU

MPI Rank O MPI Rank 1

cudaMemcpy (s buf h,s buf d,size,cudaMemcpyDeviceToHost) ;
MPI Send(s buf h,size,MPI CHAR,1,tag,MPI COMM WORLD) ;

MPI Recv(r buf h,size,MPI CHAR,0,tag,MPI COMM WORLD, &stat) ;
cudaMemcpy (r buf d,r buf h,size,cudaMemcpyHostToDevice) ;

REGULAR MPI GPU TO REMOTE GPU

MPI GPU TO REMOTE GPU

without GPUDirect
MPI Rank 0 MPI Rank 1

MPI Send(s buf d,size,MPI CHAR,!,tag,MPI COMM WORLD) ;

MPI Recv(r buf d,size,MPI CHAR,0,tag,MPI COMM WORLD, &stat) ;

MPI GPU TO REMOTE GPU

without GPUDirect

MPI Rank O

fpragma acc host data use device

MPI Recv(r buf,size,MPI CHAR,0,tag,MPI COMM WORLD, &stat);

MPI Rank 1

(s _buf, r buf)
MPI Send(s buf,size,MPI CHAR,1l,tag,MPI COMM WORLD) ;

14

<A NVIDIA.

MPI GPU TO REMOTE GPU

without GPUDirect

Time

MPI GPU TO REMOTE GPU

Support for RDMA
MPI Rank 0 MPI Rank 1

MPI Send(s buf d,size,MPI CHAR,1,tag,MPI COMM WORLD) ;

MPI Recv(r buf d,size,MPI CHAR,0,tag,MPI COMM WORLD, &stat) ;

MPI GPU TO REMOTE GPU

Support for RDMA
MPI Rank 0 MPI Rank 1

#pragma acc host data use device (s buf, r buf)
MPI Send(s buf,size,MPI CHAR,1,tag,MPI COMM WORLD) ;

MPI Recv(r buf,size,MPI CHAR,0,tag,MPI COMM WORLD, &stat) ;

17 @A NVIDIA.

MPI GPU TO REMOTE GPU

Support for RDMA

»ppe

JSRUN/SMPI GPU OPTIONS

To enable CUDA aware MPI, use

KNOWN ISSUES ON SUMMIT

Things to watch out for (as of January)

Problems with Multiple resource sets per node:
$> jsrun -g 1 -a 1 --smpiargs=“-gpu”

[1]Error opening IPC Memhandle from peer:0, invalid argument

One workaround: set PAMI DISABLE PC=1

Expect poor performance, but a good functionality check

Will be resolved by software updates later this year

PERFORMANT WORKAROUNDS

Running On Summit

Option 1: Run in one resource set and set GPU affinity in your code
(do NOT restrict CUDA_VISIBLE_DEVICES, but you can permute it)
Option 2: Use a wrapper script
Add “#BSUB -step_cgroup n” to your LSF options
Run with “jsrun <your-jsrun-options> --smpiargs="-gpu” ./gpu_setter.sh <your app>"
(script on next slide)

Will need to be careful about your CPU bindings!

#! /bin/bash

gpu setter.sh

Rudimentary GPU affinity setter for Summit

>$ jsrun -rs per host 1 —-gpu per rs 6 <task/cpu option> ./gpu setter.sh <your app>

This script assumes your code does not attempt to set its own
GPU affinity (e.g. with cudaSetDevice). Using this affinity script
with a code that does its own internal GPU selection probably won't work!

Compute device number from OpenMPI local rank environment variable
Keeping in mind Summit has 6 GPUs per node
mydevice=$ ((${OMPI COMM WORLD LOCAL RANK} % 6))

CUDA VISIBLE DEVICES controls both what GPUs are visible to your process

and the order they appear in. By putting "mydevice" first the in list, we

make sure it shows up as device "0" to the process so it's automatically selected.
The order of the other devices doesn't matter, only that all devices (0-5) are

present.

+H H= =

CUDA VISIBLE DEVICES="${mydevice},0,1,2,3,4,5"

Process with sed to remove the duplicate and reform the list, keeping the order we
set

CUDA VISIBLE DEVICES=$ (sed -r ':a; s/\b([[:alnum:]]+)\b(.*)\b\I\b/\1\2/g; ta;
s/ (,,)+/,/g9; s/, *$//' <<< $CUDA VISIBLE DEVICES)

export CUDA VISIBLE DEVICES

Launch the application we were given
exec "$@"

GPU TO GPU COMMUNICATION

CUDA aware MPI functionally portable
OpenACC/MP interoperable
Performance may vary between on/off node, socket, HW support for GPU Direct

Unified memory support varies between implementations, but it becoming common

For more information on the following advanced on-node communication models, see the
OLCF Training Archive or Summit Training Workshops

Single-process, multi-GPU

Multi-process, single-gpu

38

NVIDIA.

R J

<ANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

