
ORNL is managed by UT-Battelle
for the US Department of Energy

Targeting GPUs using OpenMP
Directives on Summit with
GenASiS: A Simple and Effective
Fortran Experience

Reuben D. Budiardja
Scientific Computing Group,
Oak Ridge Leadership Computing Facility,
Oak Ridge National Laboratory

Christian Cardall
Physics Division,
Oak Ridge National Laboratory

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

The Application

General Astrophysics Simulation System (GenASiS)
• Designed for parallel, large scale simulations

– weak-scale to ~100 thousands MPI processes
• Written entirely in modern Fortran (2003, 2008)
• Modular, object-oriented design, and extensible
• Multi-physics solvers:

– (Magneto)-hydrodynamics (HLL, HLLC solvers)
– Explicit 2nd order time-integration
– Self-gravity, polytropic & nuclear EoS
– Grey and spectral neutrino transport

• CPU only code with OpenMP for threading (prior to this work)

The Application

• Studied the role fluid instabilities ---
convection and Standing Accretion Shock
Instability (SASI) --- in supernova dynamics

• Discovered exponential magnetic field
amplification by SASI in progenitor star
→ origin of neutron star magnetic fields

• Refactored to three major subdivisions:
Basics, Mathematics, Physics → allowing
unit testing, ad-hoc/standalone tests,
mini-apps

Paths to Targeting GPU

• CUDA
– requires rewrite of all computational kernels
– loss of Fortran semantics (multi-d arrays, pointer/array remapping)
– requires interfacing with the rest of the (Fortran) code

• CUDA Fortran
– non standard extension to Fortran (XL, PGI)
– cannot easily fall back to standard Fortran

• Directives (OpenMP)
– retain Fortran semantics
– OpenMP 4.5 has excellent support from IBM XL (Summit), CCE (Titan)

• with excellent support for modern Fortran

Lower-Level GenASiS Functionality

• Fortran wrappers to OpenMP APIs
– call AllocateDevice(Value, D_Value)

 → omp_target_alloc()

call AssociateHost(D_Value, Value)
 → omp_target_associate_ptr()

call UpdateDevice(Value, D_Value),
call UpdateHost(Value, D_Value)
 → omp_target_memcpy()

Value : Fortran array
D_Value : type(c_ptr), GPU
address

● Affirmative control of data movement
● Persistent memory allocation on the device

Higher-level GenASiS Functionality
• StorageForm :

– a class for data and metadata; the ‘heart’ of data storage facility in GenASiS
– metadata includes units, variable names (for I/O, visualization)
– used to group together a set of related physical variables (e.g. Fluid)
– render more generic and simplified code for I/O, ghost exchange,

prolongation & restriction (AMR mesh)

• Data: StorageForm % Value (nCells, nVariables)

• Methods:
– call StorageForm % Initialize () ← allocate data on host
– call StorageForm % AllocateDevice () ← allocate data on GPU
– call StorageForm % Update{Device,Host} () ← transfer data

Sidebar: OpenMP Memory for Offload

• OpenMP maps host (CPU) variables to device (GPU) (explicitly or
implicitly)
– default copy to-from

• Presence check: if fail, new variable is created on device

– sometime requires explicit association to avoid unintentional data
movement

Offloading Computational Kernel

call F % Initialize &
 ([nCells, nVariables])
call F % AllocateDevice ()
call F % UpdateDevice ()
call AddKernel &
 (F % Value (:, 1),
 F % Value (:, 2), &
 F % D_Value (1),
 F % D_Value (2), &
 F % D_Value (3),
 F % Value (:, 3))

Tells OpenMP data location on GPU
→avoid (implicit) allocation & transfer

Example of Kernel with Pointer Remapping

real (KDR), dimension (:, :, :), pointer
 :: V, dV

V (−1:nX+2, −1:nY+2, −1:nZ+2) => F % Value (: , iV)
dV (−1:nX+2 , −1:nY+2 , −1:nZ+2) => dF % Value (: , iV)

call ComputeDifferences_X (V, F % D_Value (iV), ...)

Example of Kernel with Pointer Remapping

Porting a Fluid Dynamics Application: RiemannProblem

Initial (left) and final (right) density of 1D and 3D RiemannProblem

Fluid Evolution on CPU

Fluid Evolution on GPU

Performance Results

“Proportional resource tests”:
7 CPU cores vs. 1 GPU

6 RS per host,
1 MPI (+OpenMP) per RS

jsrun -r6 -c7 -g1 -a1 -bpacked:7

Performance Results: Weak-Scaling 3D RiemannProblem

3.92X - 6.71X
speedup from 7 CPU
threads to GPU

Performance Results: Kernel Timings

Performance Results: Kernel Speedups

Performance Results: Timing Distribution

Beyond OpenMP: Using Pinned Memory

To optimize data transfers:
• pinned memory: page-locked host memory allocated using
cudaMallocHost() or cudaHostAlloc()

• created another Fortran wrapper in GenASiS, used in StorageForm
initialization method as an option
StorageForm % Initialize (…, PinnedOption = .true.)

• No mechanism to do this with OpenMP 4.5 (but perhaps in 5.x)

Performance Results: Using Pinned Memory

Speedups of ~2.6X when
pinned memory is used →
overall speedups of over 12X
from 7 CPU threads

Implications (Then and Now)

• c. 2010: 10243 cells with 64000 processors (Jaguar), ~3s per
timestep
Now: 64 GPUs (11 nodes) on Summit, ~1.2s per timestep

• Enable us to do higher-fidelity simulations, ensemble studies for
trends in observables
– plan to perform ~200 2D grey transport supernova simulations, tens of 3D

grey transport, and a handful of 3D spectral transport simulations

• First step towards full Boltzmann radiation transport (6-D problem +
time) with exascale computing

Remaining Issues and Future Work

• A single code-base with OpenMP for multi-threading and offload
– Fall back to multi-threading with target if-clause is problematic
– team distribute directive introduce deleterious effects for multi-threading

• Kernel-launch parallelism and CUDA streams
– no mechanism within OpenMP to affect and select stream

• Better compilers support for OpenMP 4.5 - 5.x
• Using CUDA-aware MPI for GPU Direct

– benefit (vs. manual staging on host) depends on message sizes

Conclusion

• Using OpenMP allows for a simple and effective porting of Fortran
code to target GPU
– 2 - 3 months “walltime” efforts for this project
– ~1 day / week “person time” efforts

• OpenMP 4.5 (and later) is a path to port code to GPU
– more compilers are supporting OpenMP offload (XL, GCC, CCE, Intel, PGI,

LLVM-based)

• Code available on http://github.com/GenASiS
– paper describing this work in preparation

http://github.com/GenASiS

