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The Application

General Astrophysics Simulation System (GenASiS)
• Designed for parallel, large scale simulations

– weak-scale to ~100 thousands MPI processes
• Written entirely in modern Fortran (2003, 2008)
• Modular, object-oriented design, and extensible
• Multi-physics solvers:

– (Magneto)-hydrodynamics (HLL, HLLC solvers)
– Explicit 2nd order time-integration
– Self-gravity, polytropic & nuclear EoS
– Grey and spectral neutrino transport

• CPU only code with OpenMP for threading (prior to this work) 



The Application

• Studied the role fluid instabilities --- 
convection and Standing Accretion Shock 
Instability (SASI) --- in supernova dynamics 

• Discovered exponential magnetic field 
amplification by SASI in progenitor star 
→ origin of neutron star magnetic fields

• Refactored to three major subdivisions: 
Basics, Mathematics, Physics → allowing 
unit testing, ad-hoc/standalone tests,  
mini-apps



Paths to Targeting GPU 

• CUDA
– requires rewrite of all computational kernels
– loss of Fortran semantics (multi-d arrays, pointer/array remapping)
– requires interfacing with the rest of the (Fortran) code

• CUDA Fortran
– non standard extension to Fortran (XL, PGI)
– cannot easily fall back to standard Fortran

• Directives (OpenMP)
– retain Fortran semantics
– OpenMP 4.5 has excellent support from IBM XL (Summit), CCE (Titan)

• with excellent support for modern Fortran 



Lower-Level GenASiS Functionality

• Fortran wrappers to OpenMP APIs  
– call AllocateDevice(Value, D_Value) 

  → omp_target_alloc()

call AssociateHost(D_Value, Value) 
  → omp_target_associate_ptr()

call UpdateDevice(Value, D_Value), 
call UpdateHost(Value, D_Value)
  → omp_target_memcpy()

Value : Fortran array
D_Value : type(c_ptr), GPU 
address

● Affirmative control of data movement
● Persistent memory allocation on the device



Higher-level GenASiS Functionality
• StorageForm :

– a class for data and metadata; the ‘heart’ of data storage facility in GenASiS
– metadata includes units, variable names (for I/O, visualization)
– used to group together a set of related physical variables (e.g. Fluid)
– render more generic and simplified code for I/O, ghost exchange, 

prolongation & restriction (AMR mesh) 

• Data: StorageForm % Value ( nCells, nVariables )

• Methods:
– call StorageForm % Initialize ( ) ← allocate data on host
– call StorageForm % AllocateDevice ( ) ← allocate data on GPU
– call StorageForm % Update{Device,Host} ( ) ← transfer data



Sidebar: OpenMP Memory for Offload

• OpenMP maps host (CPU) variables to device (GPU) (explicitly or 
implicitly)
– default copy to-from

 
• Presence check: if fail, new variable is created on device

– sometime requires explicit association to avoid unintentional data 
movement 



Offloading Computational Kernel

call F % Initialize &
  ([nCells, nVariables])
call F % AllocateDevice ( )
call F % UpdateDevice ( )
call AddKernel &
  ( F % Value ( :, 1 ),
    F % Value ( :, 2 ), &
    F % D_Value ( 1 ), 
    F % D_Value ( 2 ), &
    F % D_Value ( 3 ), 
    F % Value ( :, 3 ) ) 

Tells OpenMP data location on GPU 
→avoid (implicit) allocation & transfer



Example of Kernel with Pointer Remapping

real ( KDR ), dimension ( :, :, : ), pointer 
  :: V, dV

V ( −1:nX+2, −1:nY+2, −1:nZ+2 ) => F % Value ( : , iV )
dV ( −1:nX+2 , −1:nY+2 , −1:nZ+2 ) => dF % Value ( : , iV )

call ComputeDifferences_X ( V, F % D_Value ( iV), ... )



Example of Kernel with Pointer Remapping

  



Porting a Fluid Dynamics Application: RiemannProblem

Initial (left) and final (right) density of 1D and 3D RiemannProblem



Fluid Evolution on CPU



Fluid Evolution on GPU



Performance Results

“Proportional resource tests”: 
7 CPU cores vs. 1 GPU

6 RS per host, 
1 MPI (+OpenMP) per RS

jsrun -r6 -c7 -g1 -a1 -bpacked:7



Performance Results: Weak-Scaling 3D RiemannProblem

3.92X - 6.71X 
speedup from 7 CPU 
threads to GPU



Performance Results: Kernel Timings



Performance Results: Kernel Speedups



Performance Results: Timing Distribution



Beyond OpenMP: Using Pinned Memory

To optimize data transfers:
• pinned memory: page-locked host memory allocated using 
cudaMallocHost() or cudaHostAlloc()

• created another Fortran wrapper in GenASiS, used in StorageForm 
initialization method as an option
StorageForm % Initialize ( …, PinnedOption = .true.)

• No mechanism to do this with OpenMP 4.5 (but perhaps in 5.x)



Performance Results: Using Pinned Memory

Speedups of ~2.6X  when 
pinned memory is used → 
overall speedups of over 12X 
from 7 CPU threads



Implications (Then and Now)

• c. 2010: 10243 cells with 64000 processors (Jaguar), ~3s per 
timestep
Now: 64 GPUs (11 nodes) on Summit, ~1.2s per timestep

• Enable us to do higher-fidelity simulations, ensemble studies for 
trends in observables
– plan to perform ~200 2D grey transport supernova simulations, tens of 3D 

grey transport, and a handful of 3D spectral transport simulations

• First step towards full Boltzmann radiation transport (6-D problem + 
time) with exascale computing



Remaining Issues and Future Work

• A single code-base with OpenMP for multi-threading and offload
– Fall back to multi-threading with target if-clause is problematic
– team distribute directive introduce deleterious effects for multi-threading

• Kernel-launch parallelism and CUDA streams
– no mechanism within OpenMP to affect and select stream

• Better compilers support for OpenMP 4.5 - 5.x
• Using CUDA-aware MPI for GPU Direct

– benefit (vs. manual staging on host) depends on message sizes



Conclusion

• Using OpenMP allows for a simple and effective porting of Fortran 
code to target GPU
– 2 - 3 months “walltime” efforts for this project
– ~1 day / week “person time” efforts

• OpenMP 4.5 (and later) is a path to port code to GPU
– more compilers are supporting OpenMP offload (XL, GCC, CCE, Intel, PGI, 

LLVM-based)

• Code available on http://github.com/GenASiS
– paper describing this work in preparation

http://github.com/GenASiS

