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6/5D Simulations of Plasmas  in 
“Toroidal” Tokamak Geometry

ITER

Torus, not a straight cylinder: physics and math become more 
complicated through spatial inhomogeneity and toroidal mode coupling.

-> Simplified geometry approaches have limited applicability.
-> Requires ~billion-trillion particles to describe important physics
-> Extreme scale simulation

XGC1 Simulation

60m,                           ~$20B



XGC1 Particle-in-cell Code

● Gyrokinetic approximation reduces 6D problem to 5D

● XGC1: Gyrokinetic particle-in-cell (PIC) code for modeling plasma in 
tokamak, especially in edge region and near separatrix

● Unstructured triangular grid aligned to flux surfaces to resolve edge 
geometry and separatrix, O(10^6) triangles per plane for ITER

● NERSC Exascale Science Applications Program (NESAP) for Cori 
Phase II (Intel Xeon Phi) and Oak Ridge Center for Accelerated 
Application Readiness (CAAR) for Summit (Nvidia GPU)

● Performance portability achieved with OpenACC and OpenMP 
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XGC

• Center for High Fidelity Boundary Plasma Simulation 
https://hbps.pppl.gov/computing/xgc-1

• Mostly F90, Petsc, NTCC Splines, LAPACK, ADIOS for 
parallel I/O

• Key Kernels: electron push and multi-species collision
• Cuda Fortran in electron push to take advantage of 

texture cache
• OpenACC version of electron push and multi-species 

collision
• Separate versions of push kernel for vectorization on 

Intel KNL

https://hbps.pppl.gov/computing/xgc-1


● Fokker-Planck-Landau collision operator

Nonlinear multi-species collision
[Robert Hager et al., J. Comput. Phys.‘16 ]

Weak form 
(implemented) 



Nonlinear Multi-species 
Collision Algorithm 

● Density functions fa/b, M x N velocity grid
● Backward Euler for time integration
● Implicit Picard fixed-point iteration to 

solve nonlinear equation. 
● Finite difference/volume discretization
● Computation matrix coefficients E and D 

O(MxN) complexity for each velocity grid 
point : O(M2xN2) - very expensive

● Spectral methods and FMM investigated

MN
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Collision Kernel
• Generate distribution from discrete particle data in 

Voronoi polygon of vertex (may need to merge 
subdomains to obtain sufficient number of particles)

• Solve non-linear equations by Picard fixed-point 
iteration  in 2D velocity phase-space (M x N)

• Independent system on each mesh vertex, 5-point 
stencil on rectangular grid leads to banded matrix, 
and solved by LAPACK band solver (on CPU)

• New development in conservative resampling in 
mapping distribution back to particles  may require 
solving least squares optimization problem with 
algebraic constraints
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Collision Kernel (2)

• High cost in matrix construction:
– high memory usage (O(M2 N2)) may limit number of 

concurrent kernels
– large arrays preallocated (for each thread)
– vectorized evaluation of elliptic functions to fill large arrays
– efficient AVX vectorization on KNL and OpenACC on GPU
– nested OpenMP parallelization on CPU

• Sparse matrix transfered and solved by LAPACK 
band solver (CPU)

• OpenMP threads launch OpenACC kernels
– concerns about  race conditions on Summit
– disable OpenMP, run single  kernel on GPU

• Future needs in multi-species collision can 
significantly increase the computation cost
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OpenACC Memory Pool

• https://www.olcf.ornl.gov/wp-content/uploads/2018/
03/PGI_OpenACC_ORNL_March_2018-final.pdf

• OpenACC memory pool as optimization feature
acc_malloc(), acc_free()

• Less memory available for CUDA library or CUDA 
memory allocation

• PGI_ACC_POOL_ALLOC=0   to turn off this feature
• Other environment variables such as 

PGI_ACC_POOL_SIZE, PGI_ACC_POOL_THRESHOLD
• call acc_clear_freelists()  to release memory to CUDA

https://www.olcf.ornl.gov/wp-content/uploads/2018/03/PGI_OpenACC_ORNL_March_2018-final.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/03/PGI_OpenACC_ORNL_March_2018-final.pdf
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Electron Push Kernel

• Electron sub-cycling requires about 50 time steps per 
ion time step, particles can travel cross many planes 
on torus

• Expensive operations  (MPI communication, data 
movement, allocate device memory)  to replicate 
field information to all GPUs

• Push performed on GPU without further 
communication

• GPU kernel is limited by memory access, not FLOPS

• Solve initial value ODE by Runge-Kutta method 
• Heuristics to balance work load and device memory



1111  Open slide master to edit

Electron Push Kernel (2)

• Deep call graph of Fortran 
module routines and data 
structures:
– push one particle to completion
– essentially embarrassingly parallel
– interpolation from  cubic splines
– locate particle in unstructured 

triangle mesh (heuristic to check 
same triangle)

– CUDA Fortran to use texture 
cache

– OpenACC version 
• On Titan, push particles on 

both GPU (>=70%) and CPU 
(<=30%)



1212  Open slide master to edit

Optimization for GPU

• Array of Structure (AoS) on CPU,  Structure of Array 
(SoA) on GPU, so data transpose required

• Tuning parameter for periodic particle bin sorting to 
improve locality and cache reuse. Note 
rearrangement of data structure is expensive.

• Particle search by geometric bin hashing into 2D 
uniform Cartesian grid holding short list of triangles.
 

• Heuristic: First check whether particle is still in same 
triangle. 

• Particle binning or  sorting  (by triangle number) → 
require custom allocator for optimized prefix sum 
scan by Nvidia Thrust  library
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Optimization for GPU (2)

• Asynchronous data transfer between CPU/GPU
– Expect particle data to fill GPU device memory
– dynamic pinning of host buffers
– preallocated (small) device buffers to perform transpose 

operations on GPU
– employ multiple streams to overlap
– Implemented using F2003 abstract type, abstract 

procedures customized for transpose operation of different 
data structures

– CUDA events for synchronization and timing
• Asynchronous (non-blocking) electron push on GPU
• Concurrently push ion particles on multi-cores  using 

OpenMP
• Dynamic load balancing of particles assigned to 

GPU and GPU. However, nearly all particles assigned 
to Volta GPU.
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Future Development

• Texture cache may not be necessary for Volta with 
combined L1 cache

• Avoid transpose by using  data structure optimized 
for GPU 

• Over-subscribe device memory for particle data, 
concurrently overlap data movement with GPU push

• new particle-mesh library under development to 
avoid replicating all field data
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Vectorized Push Kernel for KNL

• Developed by NESAP Postdoc (Tuomas Koskela) for 
Cori/KNL and still developed by ALCF Postdoc 

• Vectorized version for KNL (with SoAoS) to push 
groups of particles

• Vectorized version of code  performs poorly when 
ported using OpenACC on GPU:
– long loops split  up as simpler loops to be recognized for 

vectorization by compiler
– temporary vectors increase register usage and decrease 

parallelism on GPU
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Atomic Update 

• Need atomic 64-bit floating point (FP64) updates for 
particle charge deposition on background grid  and 
for diagnostics

• Avoid collision hazard by replicating arrays for 
OpenMP threads

• Kepler GPU has hardware support for atomic FP32 
updates, but uses atomic 64-bit compare-and-swap 
to emulate  atomic update for FP64

• Pascal and Volta GPUs have hardware support for 
atomic update of FP64 with significantly improved 
performance
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Strong Scaling of XGC

• XGC has been scaled to 2048 nodes (over 40% of full 
machine) on Summit with about 90% parallel 
efficiency

• The CPU + GPU version is over 10X faster compared 
to not using the GPU

• Using same number of GPUs on Titan (12288 nodes), 
the Summit version is over 3X faster 
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Strong scaling of XGC on Summit
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Comparison of Titan vs Summit
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Porting challenges

• Compiler,  system software, tools for profiling and 
debugging

• Need stable system
• Concern about race condition in OpenMP threads 

launching OpenACC kernels
• OpenACC has separate pool of device memory 

(optimization feature)
• Band solver on GPU can reduce data movement
• Load balancing between particle push,  collision 

kernel (number of local mesh vertices), amount of 
GPU device memory
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