
ORNL is managed by UT-Battelle, LLC
for the US Department of Energy

Experiences in Porting XGc to Summit

Ed D’Azevedo (ORNL)

presenting for the XGC Team

6/5D Simulations of Plasmas in
“Toroidal” Tokamak Geometry

ITER

Torus, not a straight cylinder: physics and math become more
complicated through spatial inhomogeneity and toroidal mode coupling.

-> Simplified geometry approaches have limited applicability.
-> Requires ~billion-trillion particles to describe important physics
-> Extreme scale simulation

XGC1 Simulation

60m, ~$20B

XGC1 Particle-in-cell Code

● Gyrokinetic approximation reduces 6D problem to 5D

● XGC1: Gyrokinetic particle-in-cell (PIC) code for modeling plasma in
tokamak, especially in edge region and near separatrix

● Unstructured triangular grid aligned to flux surfaces to resolve edge
geometry and separatrix, O(10^6) triangles per plane for ITER

● NERSC Exascale Science Applications Program (NESAP) for Cori
Phase II (Intel Xeon Phi) and Oak Ridge Center for Accelerated
Application Readiness (CAAR) for Summit (Nvidia GPU)

● Performance portability achieved with OpenACC and OpenMP

44 Open slide master to edit

XGC

• Center for High Fidelity Boundary Plasma Simulation
https://hbps.pppl.gov/computing/xgc-1

• Mostly F90, Petsc, NTCC Splines, LAPACK, ADIOS for
parallel I/O

• Key Kernels: electron push and multi-species collision
• Cuda Fortran in electron push to take advantage of

texture cache
• OpenACC version of electron push and multi-species

collision
• Separate versions of push kernel for vectorization on

Intel KNL

https://hbps.pppl.gov/computing/xgc-1

● Fokker-Planck-Landau collision operator

Nonlinear multi-species collision
[Robert Hager et al., J. Comput. Phys.‘16]

Weak form
(implemented)

Nonlinear Multi-species
Collision Algorithm

● Density functions fa/b, M x N velocity grid
● Backward Euler for time integration
● Implicit Picard fixed-point iteration to

solve nonlinear equation.
● Finite difference/volume discretization
● Computation matrix coefficients E and D

O(MxN) complexity for each velocity grid
point : O(M2xN2) - very expensive

● Spectral methods and FMM investigated

MN

77 Open slide master to edit

Collision Kernel
• Generate distribution from discrete particle data in

Voronoi polygon of vertex (may need to merge
subdomains to obtain sufficient number of particles)

• Solve non-linear equations by Picard fixed-point
iteration in 2D velocity phase-space (M x N)

• Independent system on each mesh vertex, 5-point
stencil on rectangular grid leads to banded matrix,
and solved by LAPACK band solver (on CPU)

• New development in conservative resampling in
mapping distribution back to particles may require
solving least squares optimization problem with
algebraic constraints

88 Open slide master to edit

Collision Kernel (2)

• High cost in matrix construction:
– high memory usage (O(M2 N2)) may limit number of

concurrent kernels
– large arrays preallocated (for each thread)
– vectorized evaluation of elliptic functions to fill large arrays
– efficient AVX vectorization on KNL and OpenACC on GPU
– nested OpenMP parallelization on CPU

• Sparse matrix transfered and solved by LAPACK
band solver (CPU)

• OpenMP threads launch OpenACC kernels
– concerns about race conditions on Summit
– disable OpenMP, run single kernel on GPU

• Future needs in multi-species collision can
significantly increase the computation cost

99 Open slide master to edit

OpenACC Memory Pool

• https://www.olcf.ornl.gov/wp-content/uploads/2018/
03/PGI_OpenACC_ORNL_March_2018-final.pdf

• OpenACC memory pool as optimization feature
acc_malloc(), acc_free()

• Less memory available for CUDA library or CUDA
memory allocation

• PGI_ACC_POOL_ALLOC=0 to turn off this feature
• Other environment variables such as

PGI_ACC_POOL_SIZE, PGI_ACC_POOL_THRESHOLD
• call acc_clear_freelists() to release memory to CUDA

https://www.olcf.ornl.gov/wp-content/uploads/2018/03/PGI_OpenACC_ORNL_March_2018-final.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/03/PGI_OpenACC_ORNL_March_2018-final.pdf

1010 Open slide master to edit

Electron Push Kernel

• Electron sub-cycling requires about 50 time steps per
ion time step, particles can travel cross many planes
on torus

• Expensive operations (MPI communication, data
movement, allocate device memory) to replicate
field information to all GPUs

• Push performed on GPU without further
communication

• GPU kernel is limited by memory access, not FLOPS

• Solve initial value ODE by Runge-Kutta method
• Heuristics to balance work load and device memory

1111 Open slide master to edit

Electron Push Kernel (2)

• Deep call graph of Fortran
module routines and data
structures:
– push one particle to completion
– essentially embarrassingly parallel
– interpolation from cubic splines
– locate particle in unstructured

triangle mesh (heuristic to check
same triangle)

– CUDA Fortran to use texture
cache

– OpenACC version
• On Titan, push particles on

both GPU (>=70%) and CPU
(<=30%)

1212 Open slide master to edit

Optimization for GPU

• Array of Structure (AoS) on CPU, Structure of Array
(SoA) on GPU, so data transpose required

• Tuning parameter for periodic particle bin sorting to
improve locality and cache reuse. Note
rearrangement of data structure is expensive.

• Particle search by geometric bin hashing into 2D
uniform Cartesian grid holding short list of triangles.

• Heuristic: First check whether particle is still in same
triangle.

• Particle binning or sorting (by triangle number) →
require custom allocator for optimized prefix sum
scan by Nvidia Thrust library

1313 Open slide master to edit

Optimization for GPU (2)

• Asynchronous data transfer between CPU/GPU
– Expect particle data to fill GPU device memory
– dynamic pinning of host buffers
– preallocated (small) device buffers to perform transpose

operations on GPU
– employ multiple streams to overlap
– Implemented using F2003 abstract type, abstract

procedures customized for transpose operation of different
data structures

– CUDA events for synchronization and timing
• Asynchronous (non-blocking) electron push on GPU
• Concurrently push ion particles on multi-cores using

OpenMP
• Dynamic load balancing of particles assigned to

GPU and GPU. However, nearly all particles assigned
to Volta GPU.

1414 Open slide master to edit

Future Development

• Texture cache may not be necessary for Volta with
combined L1 cache

• Avoid transpose by using data structure optimized
for GPU

• Over-subscribe device memory for particle data,
concurrently overlap data movement with GPU push

• new particle-mesh library under development to
avoid replicating all field data

1515 Open slide master to edit

Vectorized Push Kernel for KNL

• Developed by NESAP Postdoc (Tuomas Koskela) for
Cori/KNL and still developed by ALCF Postdoc

• Vectorized version for KNL (with SoAoS) to push
groups of particles

• Vectorized version of code performs poorly when
ported using OpenACC on GPU:
– long loops split up as simpler loops to be recognized for

vectorization by compiler
– temporary vectors increase register usage and decrease

parallelism on GPU

1616 Open slide master to edit

Atomic Update

• Need atomic 64-bit floating point (FP64) updates for
particle charge deposition on background grid and
for diagnostics

• Avoid collision hazard by replicating arrays for
OpenMP threads

• Kepler GPU has hardware support for atomic FP32
updates, but uses atomic 64-bit compare-and-swap
to emulate atomic update for FP64

• Pascal and Volta GPUs have hardware support for
atomic update of FP64 with significantly improved
performance

1717 Open slide master to edit

Strong Scaling of XGC

• XGC has been scaled to 2048 nodes (over 40% of full
machine) on Summit with about 90% parallel
efficiency

• The CPU + GPU version is over 10X faster compared
to not using the GPU

• Using same number of GPUs on Titan (12288 nodes),
the Summit version is over 3X faster

1818 Open slide master to edit

Strong scaling of XGC on Summit

1919 Open slide master to edit

Comparison of Titan vs Summit

2020 Open slide master to edit

Porting challenges

• Compiler, system software, tools for profiling and
debugging

• Need stable system
• Concern about race condition in OpenMP threads

launching OpenACC kernels
• OpenACC has separate pool of device memory

(optimization feature)
• Band solver on GPU can reduce data movement
• Load balancing between particle push, collision

kernel (number of local mesh vertices), amount of
GPU device memory

2121 Open slide master to edit

Acknowledgements

• Support provided through the SciDAC program
funded by US DOE Office of Advanced Scientific
Computing Research and Office of Fusion Energy
Sciences.

• Awards of computer time were provided by the
Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program.

• This research used resources of OLCF, ALCF, and
NERSC, which are U.S. DOE Office of Science User
Facilities supported under contracts
DE-AC05-00OR22725, DE-AC02-06CH11357, and
DE-AC02-05CH11231, respectively.

22

This research used resources of the Oak
Ridge Leadership Computing Facility at the

Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S.

Department of Energy under Contract No.
DE-AC05-00OR22725.

Questions?
Ed D’Azevedo
dazevedoef@ornl.gov

