
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

CAAR Porting Experience: QMCPACK

OLCF Summit Training Workshop

Andreas F. Tillack, Ying Wai Li, Paul R. C.
Kent, Ed D’Azevedo, Tjerk P. Straatsma

December 6, 2018

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

2

QMCPACK on

• QMCPACK: Accurate
quantum mechanics based
simulation of materials,
including high temperature
superconductors.

• QMCPACK runs correctly and
with good initial performance
on up to 1024 nodes (>20%
Summit) NiO 256 atom cell

Summit Scaling

3

• A single Summit node is 50-times
faster than a Titan node for this
problem, indicating a ~3.7x
increase in the complexity of
materials (electron count)
computable in the same
walltime as Titan.

• Summit exceeds performance
gains expected based on peak
flops by a factor of 1.57x
(Summit vs. Titan node)

QMCPACK on

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Titan GPU Summit CPUs SummitDev
GPUs

Summit GPUs

To
ta

l N
od

e
Th

ro
ug

hp
ut

49.9x

QMCPACK v3.4.0 NiO 128 atom cell. Power CPU reference
uses 2 MPI tasks, 42 OpenMP threads each and optimized
“SoA” version.

19.8x

2.3x

4

Runtime trace

• Single electron update step (for set of walkers)

• Majority of work is typically in matrix inverse update (Blas-2,
rank-1 update)

• Update from previous step overlaps with CPU portion of current
step

• Wave function expressed using splines – uses majority of
memory

update_inverse1 update_inverse2

multi
copy

wf spline
evaluation

phase
factor

calculate
ratio, grad, lapl

one body
ratio & grad

PBC

two body
ratio & grad

PBC
acceptance

5

New developments for better Summit utilization

• Delayed updates increase compute intensity on GPUs
(Blas-2 → Blas-3)

• Wave function spline buffer is significant but static portion of
QMCPACK memory. Spline splitting over multiple GPUs can
increase available GPU memory (6 x 16GB = 96 GB)

• Spline splitting needs multiple MPI ranks on a node to access
multiple GPUs: Cuda MPS, IPC pointers, and jsrun resource sets

update_inverse1 update_inverse2

multi
copy

phase
factor

calculate
ratio, grad, lapl

one body
ratio & grad

PBC

two body
ratio & grad

PBC
acceptance

Delayed updates Spline splitting

wf spline
evaluation

6

Compiling can be tricky

summit> cmake -DCMAKE_C_COMPILER="mpicc" -DCMAKE_CXX_COMPILER=
"mpicxx" -DCMAKE_CXX_FLAGS="-std=c++11 -O3" -DBLAS_blas_LIBRARY=
"$OLCF_MAGMA_ROOT/lib/libmagma.so" -DLAPACK_lapack_LIBRARY=
"$OLCF_MAGMA_ROOT/lib/libmagma.so" -DBLAS_essl_LIBRARY
="$OLCF_ESSL_ROOT/lib64/libessl.so" -DQMC_CUDA=1 -DCUDA_ARCH=
"sm_70" -DBUILD_LMYENGINE_INTERFACE=0 ..

• Finding the set of libraries that work and give good
performance was first challenge

• Some older libraries may need updated config.guess and
config.sub (relying on autoconf ./configure) or other tweaks to
compile on Summit

• In general, user support is fantastic and quick to help

7

And then there was jsrun ...

• Default: One GPU per MPI rank with 6 MPI ranks per node:

• Split splines: All six GPUs visible per MPI rank, 6 MPI ranks per
node/resource set:

• Binding was single most important consideration for getting
performance

jsrun --rs_per_host 6 --nrs ${NMPI} -c7 -g1 ./qmcpack <args>

#BSUB –allocate_flags gpumps
jsrun --tasks_per_rs 6 --nrs ${NNODES} –c42 -g6 -bpacked:7
-dpacked ./qmcpack <args>

8

Visualized
One GPU per MPI rank with 6 MPI ranks per node

All six GPUs visible per MPI rank, 6 MPI ranks per
node/resource set

jsrun --rs_per_host 6 --nrs ${NMPI} -c7 -g1
./qmcpack <args>

jsrun --tasks_per_rs 6 --nrs ${NNODES} –c42
-g6 -bpacked:7 -dpacked ./qmcpack <args>

9

Summit overall experience

• The hardware is amazing

• The software has come together nicely over time, I am sure
user feedback will make it even better

• jsrun is not mpirun
– Default settings currently are optimized towards least resource usage

(no GPU, everything goes onto core 0)
– Must specify exact resource usage, placement and binding in order to

get expected behavior and performance
– https://jsrunvisualizer.olcf.ornl.gov

https://jsrunvisualizer.olcf.ornl.gov/

10

Acknowledgments
• Frank Winkler, GWT-TUD GmbH (ScoreP & Vampir support)

• Ronny Brendel, formerly GWT-TUD GmbH (ScoreP & Vampir
support), now Nvidia

• Jeff Larkin, Nvidia (development & coffee support)

• Steve Abbott, Nvidia (nvprof hair-pulling)

• Eric Lixiang Luo, IBM (SummitDev support)

• Bob Walkup, IBM (Minsky/SummitDev support)

Thank you for your attention!

