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QMCPACK on

• QMCPACK: Accurate 
quantum mechanics based 
simulation of materials, 
including high temperature 
superconductors. 

• QMCPACK runs correctly and 
with good initial performance 
on up to 1024 nodes (>20% 
Summit) NiO 256 atom cell

Summit Scaling
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• A single Summit node is 50-times 
faster than a Titan node for this 
problem, indicating a ~3.7x 
increase in the complexity of 
materials (electron count) 
computable in the same 
walltime as Titan.

• Summit exceeds performance 
gains expected based on peak 
flops by a factor of 1.57x 
(Summit vs. Titan node)

QMCPACK on
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QMCPACK v3.4.0 NiO 128 atom cell. Power CPU reference 
uses 2 MPI tasks, 42 OpenMP threads each and optimized 
“SoA” version.
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Runtime trace

• Single electron update step (for set of walkers)

• Majority of work is typically in matrix inverse update (Blas-2, 
rank-1 update)

• Update from previous step overlaps with CPU portion of current 
step

• Wave function expressed using splines – uses majority of 
memory
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New developments for better Summit utilization

• Delayed updates increase compute intensity on GPUs 
(Blas-2 → Blas-3)

• Wave function spline buffer is significant but static portion of 
QMCPACK memory. Spline splitting over multiple GPUs can 
increase available GPU memory (6 x 16GB = 96 GB)

• Spline splitting needs multiple MPI ranks on a node to access 
multiple GPUs: Cuda MPS, IPC pointers, and jsrun resource sets
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Compiling can be tricky

summit> cmake -DCMAKE_C_COMPILER="mpicc" -DCMAKE_CXX_COMPILER=
"mpicxx" -DCMAKE_CXX_FLAGS="-std=c++11 -O3" -DBLAS_blas_LIBRARY=
"$OLCF_MAGMA_ROOT/lib/libmagma.so" -DLAPACK_lapack_LIBRARY=
"$OLCF_MAGMA_ROOT/lib/libmagma.so" -DBLAS_essl_LIBRARY
="$OLCF_ESSL_ROOT/lib64/libessl.so" -DQMC_CUDA=1 -DCUDA_ARCH=
"sm_70" -DBUILD_LMYENGINE_INTERFACE=0 ..

• Finding the set of libraries that work and give good 
performance was first challenge

• Some older libraries may need updated config.guess and 
config.sub (relying on autoconf ./configure) or other tweaks to 
compile on Summit

• In general, user support is fantastic and quick to help
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And then there was jsrun ...

• Default: One GPU per MPI rank with 6 MPI ranks per node:

• Split splines: All six GPUs visible per MPI rank, 6 MPI ranks per 
node/resource set:

• Binding was single most important consideration for getting 
performance

jsrun --rs_per_host 6 --nrs ${NMPI} -c7 -g1 ./qmcpack <args>

#BSUB –allocate_flags gpumps
jsrun --tasks_per_rs 6 --nrs ${NNODES} –c42 -g6 -bpacked:7
-dpacked ./qmcpack <args>
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Visualized
One GPU per MPI rank with 6 MPI ranks per node

All six GPUs visible per MPI rank, 6 MPI ranks per 
node/resource set

jsrun --rs_per_host 6 --nrs ${NMPI} -c7 -g1
./qmcpack <args>

jsrun --tasks_per_rs 6 --nrs ${NNODES} –c42
-g6 -bpacked:7 -dpacked ./qmcpack <args>
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Summit overall experience

• The hardware is amazing

• The software has come together nicely over time, I am sure 
user feedback will make it even better

• jsrun is not mpirun
– Default settings currently are optimized towards least resource usage 

(no GPU, everything goes onto core 0)
– Must specify exact resource usage, placement and binding in order to 

get expected behavior and performance
– https://jsrunvisualizer.olcf.ornl.gov

https://jsrunvisualizer.olcf.ornl.gov/
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