

# **NVIDIA PROFILING TOOLS**

Jeff Larkin, December 04, 2018

### **UPDATES FOR CUDA 9.2**

| NVPROF                                                                                                | VISUAL PROFILER                                                                                       |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Many New Metrics:<br>- Tensor Core Metrics<br>- L2 Metrics<br>- Memory Instructions<br>Per Load/Store | Summary View for Memory<br>Hierarchy<br>Improved Handling of Segments for<br>UVM Data on the Timeline |
| Display PCIe Topology                                                                                 |                                                                                                       |
| View Trace and Profile in combined output (trace)                                                     |                                                                                                       |

# **UPDATES FOR CUDA 10.0**

Added tracing support for Turing

New kernel profiler - Nsight Compute (supports Turing)

OpenMP profiling

Tracing support for CUDA kernels, memcpy and memset nodes launched by a CUDA Graph

Support for version 3 NVIDIA Tools Extension API (NVTX) (This is a headeronly implementation)



# **CUDA VISUAL PROFILER**

Overview of key features

Kernel profile - memory hierarchy view

Unified Memory

NVLink

PC sampling

OpenACC/OpenMP Profiling

NVTX



# NVIDIA'S VISUAL PROFILER (NVVP)

Timeline 🖃 [0] Tesla K40c Context MPS (CUDA) MemCpy (HtoD) - 🕎 MemCpy (DtoH) float const ... Step10 cuda .. Step10 cuda kernel. Step10 d Compute Step10 cuda k... Step10 cuda.. Step10 cuda kernel(int.. float const ... Step10 cuda .. Step10 cuda kernel.. Step10 d └ 🍸 100.0% Step10 c... Step10 cuda.. Step10 cuda kernel(int.. Step10 cuda k.. Streams



System

1. CUDA Application Analysis

2. Performance-Critical Kernels

#### 3. Compute, Bandwidth, or Latency Bound

Guided

The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory bandwidth, or instruction/memory latency. The results at right indicate that the performance of kernel "Step10\_cuda\_kernel" is most likely limited by compute.

#### 🕕 Perform Compute Analysis

The most likely bottleneck to performance for this kernel is compute so you should first perform compute analysis to determine how it is limiting performance.

4 Perform Latency Analysis

#### 👞 Perform Memory Bandwidth Analysis

Instruction and memory latency and memory bandwidth are likely not the primary performance bottlenecks for this kernel, but you may still want to perform those analyses.

4 Rerun Analysis

If you modify the kernel you need to rerun your application to update this analysis.

# DATA MOVEMENT IN VISUAL PROFILER

| 🙍 Po         | GPROF @jlarkin-dt                                    | and a second    |                              |               |                            |             |          | x   |
|--------------|------------------------------------------------------|-----------------|------------------------------|---------------|----------------------------|-------------|----------|-----|
| <u>F</u> ile | <u>∨</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp |                 |                              |               |                            |             |          |     |
| <b>*</b>     | 🖕 🖳 📑 👒 • [ 🕂 🔾                                      | 🔍   F 🥆   🔣 🚑 🚇 | [ <u>Å</u> •                 |               |                            |             |          |     |
| 8            | *NewSession1 🛿                                       |                 |                              |               |                            |             | - 0      | 8   |
|              |                                                      | 35 s            | 35.5 s                       | 36 s          | 36.5 s                     | 37 s        |          | : 🗆 |
|              | 🖃 Process "cg" (23919)                               |                 |                              | I             |                            |             |          | -   |
|              | 🖃 Thread 3484149632                                  |                 |                              |               |                            |             |          |     |
|              | └ OpenACC                                            | acc_co acc      | _enter_data@vec acc_<br>acc_ | co acc_enter_ | _data@vec acc_co<br>acc_wa | acc_enter_d | ata@vec. |     |
|              | L Driver API                                         | cuStre          | cuSi                         | tre           | cuStre                     |             |          |     |
|              | Profiling Overhead                                   |                 |                              |               |                            |             |          |     |
|              | 📃 [0] Tesla K20c                                     |                 |                              |               |                            |             |          |     |
|              | 🖃 Context 1 (CUDA)                                   |                 |                              |               |                            |             |          |     |
|              | └ 🍸 MemCpy (HtoD)                                    |                 |                              |               |                            |             |          |     |
|              | └ 🍸 MemCpy (DtoH)                                    |                 |                              |               |                            |             |          |     |
|              | 🖃 Compute                                            | _Z6ma           | _Z6                          | ma            | _Z6ma                      |             |          |     |
|              | └ 🍸 97.0% _Z6matvec                                  | _Z6ma           | _Z6                          | ma            | _Z6ma                      |             |          |     |
|              | └ 🍸 2.0% _Z6waxpbyd                                  |                 |                              |               |                            |             |          |     |
|              | └ 🍸 0.9% _Z3dotRK6v                                  |                 |                              |               |                            |             |          |     |
|              | └ 🍸 0.1% _Z3dotRK6v                                  |                 |                              |               |                            |             |          |     |
|              | 🖃 Streams                                            |                 |                              |               |                            |             |          |     |
|              | L Stream 13                                          | _Z6ma           | _Z6                          | na            | Z6ma                       |             |          |     |
|              |                                                      |                 |                              |               |                            |             |          |     |
|              |                                                      | •               |                              |               |                            |             |          | Þ   |

### **UVM IN VISUAL PROFILER**

| K NVIDIA Visual Profiler                  |                 |                                |                  | -                   |          |               | -         |              | x   |
|-------------------------------------------|-----------------|--------------------------------|------------------|---------------------|----------|---------------|-----------|--------------|-----|
| <u>File View W</u> indow <u>Run H</u> elp |                 |                                |                  |                     |          |               |           |              |     |
|                                           | Щ =, %, +   ⊕ ∈ | 2 🔍   F 🥆   📙                  | J 📮 📇 🗛 🔻        |                     |          |               |           |              |     |
| 🖻 🔍 *timelineUM.nvprof 🛛                  |                 |                                |                  |                     |          |               |           |              | B   |
|                                           | 0.7 s 0.8 s     | s 0.9 s                        | 1 s              | 1.1 s               | 1.2 s    | 1.3 s         | 1.4 s     | 1.5 s        |     |
| Process "cg" (64759)                      |                 |                                |                  |                     |          |               |           |              |     |
| 🖃 🖃 Thread 299904                         |                 |                                |                  |                     |          |               |           |              |     |
| - OpenACC                                 |                 |                                | acc_compute_co   | nstruct@vector.h:12 |          | acc           | acc acc   | acc acc ac   | C ( |
| L Driver API                              |                 |                                | cuStream         | Synchronize         |          | cuSt          | cuSt cuSt | cuSt cuSt cu | ut  |
| L Profiling Overhead                      |                 |                                |                  |                     |          |               |           |              |     |
| <ul> <li>Unified Memory</li> </ul>        |                 |                                |                  |                     |          |               |           |              |     |
| - 🍸 CPU Page Faults                       | a CPU Pa CPU Pa | a                              |                  |                     |          |               |           |              |     |
| [0] Tesla P100-SXM2-16GB                  |                 |                                |                  |                     |          |               |           |              |     |
| Unified Memory                            |                 |                                |                  |                     |          |               |           |              |     |
| 🗆 🍸 GPU Page Faults                       | GPU P           | a <mark>GPU Pa GPU Pa</mark> . | GPU Pa GPU Pa.   | GPU Pa GPU Pa       | GPU Pa ( | GPU Pa GPU Pa |           |              |     |
| 🗆 🍸 Data Migration (HtoD)                 | Data N          | /I Data M Data M.              | Data M Data M.   | Data M Data M       | Data M I | Data M Data M |           |              |     |
| <ul> <li>Context 1 (CUDA)</li> </ul>      |                 |                                |                  |                     |          |               |           |              |     |
| 🗏 🍸 MemCpy (HtoD)                         |                 |                                |                  |                     |          |               |           |              |     |
| 🗆 🍸 MemCpy (DtoH)                         |                 |                                |                  |                     |          |               |           |              |     |
| Compute                                   |                 |                                | _Z6matvecRK6matr | xRK6vectorS4_12_g   | ри       |               |           |              |     |
| └ 🍸 95.6% _Z6matvecRK                     |                 |                                | _Z6matvecRK6matr | xRK6vectorS4_12_g   | ри       |               |           |              |     |
| └ 🍸 3.3% _Z6waxpbydR                      |                 |                                |                  |                     |          |               |           |              |     |
| └ 🍸 0.7% _Z3dotRK6vect                    |                 |                                |                  |                     |          |               |           |              |     |
| └ 🝸 0.4% _Z3dotRK6vect                    |                 |                                |                  |                     |          |               |           |              |     |
| <ul> <li>Streams</li> </ul>               |                 |                                |                  |                     |          |               |           |              |     |
| └─ Stream 13                              |                 |                                | _Z6matvecRK6matr | xRK6vectorS4_12_g   | pu       |               |           |              |     |
|                                           | •               | III                            |                  |                     |          |               |           | ł            |     |

### **KERNEL PROFILE**

### Memory hierarchy view



### Segment mode timeline

| ¶ *NewSession1 ⊠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |        |       |        |       |        |       |           |              |                |        |        |       |        | ■ Properties 🛱                                                                                                                                                                                                          |                                                                                                                                                                                   |                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-------|--------|-------|--------|-------|-----------|--------------|----------------|--------|--------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Process "Jacobi" (5267)  Thread 655341440  Runtime API  Driver API  Profiling Overhead Unified Memory  TY CPU Page Faults [0] Graphics Device Unified Memory  TY Data Migration (  CY GPU Page Faults CY Data Migration CY DAta Migratio CY DAta Migratio CY DAta Migra | DtoH) | 0,2 s | 0.25 s | 0,3 s | 0.35 s | 0.4 s | 0,45 s | 0,5 s | 0.55 s    | 0.6 s        | 0.65 s         | 0.7, 5 | 0.75 s | 0.8 s | 0.85 s | CPU Page Faults<br>The segment mode is used for<br>into equal width segments a<br>segment are shown.<br>Timestamp<br>End<br>Duration<br>Virtual Address Range<br>Process                                                | for this timeline. In this mode the tin<br>and only aggregated data values for<br>268.60478 ms (268,6<br>278.93573 ms (278,9<br>10.33095 ms (10,330<br>0x900000000 - 0x90<br>5267 | neline is split<br>each time<br>04,778 ns)<br>35,731 ns)<br>,953 ns)<br>01ff000 |
| Context 1 (CUDA) Compute U 10.0% jacobi Streams Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seg   | ţmei  | nt m   | ode   | inte   | erval |        | H     | eat<br>pa | map<br>ige f | for (<br>aults | CPU    |        |       |        | The number of CPU page fa<br>0-10% [0-30000<br>10-20% [30000-6<br>20-30% [60000-9<br>30-40% [90000-1<br>40-50% [120000-<br>50-60% [150000-<br>60-70% [180000-<br>70-80% [210000-<br>80-90% [240000-<br>90-100% [>270000 | oults per second within the segment<br>[50000]<br>[50000]<br>[20000]<br>[120000]<br>[150000]<br>[180000]<br>[210000]<br>[240000]<br>[240000]<br>[270000]<br>[0]                   |                                                                                 |

### Switch to non-segment view

| Uncheck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Select settings view                   |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|
| 🗔 Analysis 🔚 GPU Details (Summary) 🖽 CPU Details 🗖 OpenACC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Details 💷 Console 🗔 Settings 🕴         |    |
| Session NewSession1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |    |
| Executable Use fixed width segments for Unified memo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ory timeline                           |    |
| Timeline Options Number of segments 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |    |
| Verifatysis (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |    |
| Start time 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ms to End time 700                     | ms |
| Enable timelines in session view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |    |
| V 🗹 All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |    |
| ▼ Ø Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |    |
| Select this tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Load data within a specific time range |    |
| S OpenAcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |    |
| CPU Page Faults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |    |
| V S Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |    |
| <ul> <li>Image: Second se</li></ul> |                                        |    |
| ✓ Open in new session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |
| Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |

### Non-segmented mode timeline



| 👿 Load da  | ta for time range |                  |     |    |
|------------|-------------------|------------------|-----|----|
| Start time | 225               | ] ms to End time | 700 | ms |
|            |                   |                  |     |    |

### **CPU Page Fault Source Correlation**

| 💺 *NewSession1 🛛 💺 *Ne               | wSession1-clone ¤ |       |        |          |          |       |        |          |        | - 0   |
|--------------------------------------|-------------------|-------|--------|----------|----------|-------|--------|----------|--------|-------|
|                                      | 0.25 s            | 0.3 s | 0.35 s | Selected | interval | 0.5 s | Source | location | 0.65 s | 0.7 s |
| Process "jacobi" (5267)              |                   |       |        |          |          |       |        | (ocacion |        |       |
| Thread 655341440                     |                   |       |        |          |          |       |        |          |        |       |
| Runtime API                          |                   |       |        |          |          |       |        |          |        |       |
| L Driver API                         |                   |       |        |          |          |       |        |          |        |       |
| Profiling Overhead                   |                   |       |        |          |          |       |        |          |        |       |
| <ul> <li>Unified Memory</li> </ul>   |                   |       |        |          |          |       |        |          |        |       |
| - 🍸 CPU Page Faults                  |                   |       |        |          |          |       |        |          |        |       |
| [0] Graphics Device                  |                   |       |        |          | <u> </u> |       |        |          |        |       |
| Unified Memory                       |                   |       |        |          |          |       |        |          |        |       |
| 🗆 🍸 Data Migration (Dto              | H)                |       |        |          |          |       |        |          |        |       |
| 🗆 🍸 GPU Page Faults                  |                   |       |        |          |          |       |        |          |        |       |
| - 🍸 Data Migration (Hto              | C)                |       |        |          |          |       |        |          |        |       |
| <ul> <li>Context 1 (CUDA)</li> </ul> |                   |       |        |          |          |       |        |          |        |       |
| Compute                              |                   |       |        |          |          |       |        |          |        |       |
| L 🍸 100.0% jacobi_ite                | r                 |       |        |          |          |       |        |          |        |       |
| Streams                              |                   |       |        |          |          |       |        |          |        |       |
| L Default                            |                   |       |        |          |          |       |        |          |        |       |
|                                      |                   |       |        |          |          |       |        |          |        |       |

| Properties      X   |                                             |
|---------------------|---------------------------------------------|
| CPU Page Faults     |                                             |
| Timestamp           | 440.45958 ms (4 <mark>40,459,581 ns)</mark> |
| Memory Acccess Type | Write                                       |
| Virtual Address     | 0x900100000                                 |
| Source Location     | main@jacobi.cu:130                          |
| Process             | 25684                                       |

12 📀 nvidia

### **CPU Page Fault Source Correlation**

| ■ Properties                                                        |                                                     |
|---------------------------------------------------------------------|-----------------------------------------------------|
| CPU Page Faults                                                     |                                                     |
| Timestamp                                                           | 440.45958 ms (440,459,581 ns)                       |
| Memory Acccess Type                                                 | Write                                               |
| Virtual Address                                                     | 0x900100000                                         |
| Source Location                                                     | main@jacobi.cu:130                                  |
| Process                                                             | 25684                                               |
| Memory Access Type<br>Virtual Address<br>Source Location<br>Process | Write<br>0x900100000<br>main@jacobi.cu:130<br>25684 |

Source line causing CPU page fault

```
💺 *NewSession1  🗟 iacobi.cu 🖾
      float * a:
      float * a new:
      float * weights;
      CUDA CALL(cudaMallocManaged(&a,
                                          nx*nv*sizeof(float))):
      CUDA CALL(cudaMallocManaged(&a new, nx*ny*sizeof(float)));
      CUDA CALL(cudaMallocManaged(&weights, n weights*sizeof(float)));
      init(a,a new,nx,ny,weights,n weights);
      cudaEvent t start,stop;
      CUDA CALL(cudaEventCreate(&start));
      CUDA CALL(cudaEventCreate(&stop));
      CUDA CALL(cudaDeviceSynchronize());
      CUDA CALL(cudaEventRecord(start));
      PUSH RANGE("while loop",0)
      int iter = 0:
      while ( iter <= iter max )</pre>
          PUSH RANGE("jacobi step",1)
          jacobi iteration<<<dim3(nx/32,ny/4),dim3(32,4)>>>(a new,a,nx,ny,weights[0]);
          CUDA CALL(cudaGetLastError());
          CUDA CALL(cudaDeviceSynchronize());
          POP RANGE
          std::swap(a,a new);
          PUSH RANGE("periodic boundary conditions",2)
          //Apply periodic boundary conditions
          for (int ix = 0; ix < nx; ++ix)
          { .
                  0*nx+ix]=a[(ny-2)*nx+ix];
              a
              a[(ny-1)*nx+ix]=a[ 1*nx+ix];
          POP RANGE
          if ( 0 == iter%100 )
              std::cout<<iter<<std::endl;</pre>
          iter++;
      3
      CUDA CALL(cudaEventRecord(stop));
      CUDA CALL(cudaDeviceSynchronize());
      POP RANGE
```

### VISUAL PROFILER - NEW UNIFIED MEMORY EVENTS

Page throttling, Memory thrashing, Remote map



### Filter and Analyze

|                             | 233.5 ms | 234 ms | 234.5 ms | 235 ms | 235.5 ms   | 236 ms | 236.5 ms | 237 ms                   | 237.5 ms | 238 ms        | 238.5 ms | 239 ms | 239.5 ms | 240 ms | 240.5 ms | 241 ms |
|-----------------------------|----------|--------|----------|--------|------------|--------|----------|--------------------------|----------|---------------|----------|--------|----------|--------|----------|--------|
| Process "vecAdd_managed" (  |          |        |          |        | · ·        |        |          |                          |          |               |          |        |          |        |          |        |
| Thread 3890149184           |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Runtime API                 |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| L Driver API                |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Profiling Overhead          |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Unified Memory              |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| 🗆 🍸 CPU Page Faults         |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| [0] Graphics Device         |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Unified Memory              |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| 🗆 🍸 Data Migration (DtoH)   |          |        | Data     |        |            |        |          |                          |          | Data          |          |        |          |        |          |        |
| - V CPU Page Faults         |          |        |          |        |            |        |          |                          |          | · · · · •     |          |        |          |        |          |        |
| Grorageradics               |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| 🗆 🍸 Data Migration (HtoD)   |          |        |          |        |            |        |          |                          |          |               |          |        |          | Data   | Data     | Data   |
| Context 1 (CUDA)            |          |        |          |        |            |        |          | <b>- - - - - - - - -</b> |          |               |          |        |          |        |          |        |
| <ul> <li>Compute</li> </ul> |          |        |          |        |            |        |          |                          |          | _             |          |        |          |        |          |        |
| L 🍸 100.0% vectorAdd        |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| <ul> <li>Streams</li> </ul> |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Default                     |          |        |          |        |            |        |          |                          |          | _             |          |        |          |        |          |        |
|                             |          |        |          |        |            |        |          |                          |          | $\rightarrow$ |          |        |          |        |          |        |
|                             |          |        |          | 1      |            |        |          | 1                        |          | $\mathbf{N}$  |          |        |          |        |          |        |
| CPU Page Faul               | ts       |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
|                             |          | ad     | 🗌 Write  |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Ассезь турс.                |          |        |          | ·      |            |        |          |                          |          | N             |          |        |          |        |          |        |
| GPU Page Faul               | ts       |        |          |        |            |        |          |                          | E214     |               |          |        |          |        |          |        |
|                             |          | ad     |          | r      | Atomic     |        | ofotob   |                          | F110     | erea i        | nterva   | lS     |          |        |          |        |
| Access Type.                |          | au     | write    |        | Atomic     |        | eretti   |                          |          |               |          |        |          |        |          |        |
| 🖌 HtoD Migratio             | ns       |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
|                             |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Reason:                     | Us       | er     | Coher    | rence  | Prefetch   | 1      |          |                          |          |               |          |        |          |        |          |        |
| V DtoH Migratio             | ns       |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
|                             |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Reason:                     | Us       | er     | Coher    | rence  | 🗹 Prefetch |        | lction   |                          |          |               |          |        |          |        |          |        |
|                             |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          |        |
| Filter and Analyze          |          |        |          |        |            |        |          |                          |          |               |          |        |          |        |          | 15 💿 ୮ |

### **NVLINK** visualization

Unguided Analysis

| 🖥 An lysis 🛱 🔤 GPU Details (Summary) 🖽 CPU D                                                                            | tails 🗖 OpenACC Details 📮 Console 🗔 Settings                                                                                                                                                                                                                                      | Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Runtime                                                |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| E Reset All Analyze All     Consider the stages select a host- aunched kernel instance in the timeline.      pplication | i NVLink Analysis<br>The following NVLink topology diagram shows logical NVLink connections between GPUs and CPUs. A logical NVLink can contai<br>receive throughput of device A is same as the transmit throughput of device B. The tables on right hand side show the propertie | properties<br>in one or more physical links. When two devices /<br>es for each logical NVLink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Values                                                 |
| Data Movement And Concurrency 📀                                                                                         | * NVLink utilization may vary in accuracy, because any activity within the sampling period is treated as active, even though most                                                                                                                                                 | : of that period could be <mark>i</mark> dle.<br>IVLink Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                      |
| Compute Utilization                                                                                                     | CPU1 CPU3                                                                                                                                                                                                                                                                         | NVLink Peak Physical Peer System<br>Bandwidth NVLinks Access Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peer System<br>Atomic Atomic Utilization % Idle time % |
| Cernel Performance                                                                                                      | Tesla P100-SX GPU0< GPU0<                                                                                                                                                                                                                                                         | ->CPU0 80 GB/s 2 No Yes<br>->GPU1 80 GB/s 2 Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No No 0 1<br>Yes No n/a 10                             |
| VLink                                                                                                                   | 138.21 MB/s 0 B/s 0 B/s 142.06 MB/s GPU1<<br>90.78 MB/s 96.86 MB/s GPU2<                                                                                                                                                                                                          | ->CPU0 80 GB/s 2 No Yes<br>->CPU1 80 GB/s 2 No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No No 0 1<br>No No 0 1                                 |
| Inified Memory                                                                                                          | CPU 0 CPU 1 GPU2<                                                                                                                                                                                                                                                                 | ->GPU3 80 GB/s 2 Yes No<br>->CPU1 80 GB/s 2 No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes No n/a 100<br>No No 0 1                            |
| Option to collect                                                                                                       | 90.92 MB/s 0 B/s 0 B/s 0 B/s Logical N                                                                                                                                                                                                                                            | IVLink Throughput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · ·                                            |
| VLink information                                                                                                       | ISO,00 MD/S GPU 0<br>Tesla P100-SX Tesla P100-SX ISO MD/S GPU 2<br>Tesla P100-SX ISO MD/S GPU 2<br>Tesla P100-SX                                                                                                                                                                  | NVLink         Avg Throughput         Max Throughput         Min           CPU0         90.917 MB/s         36.085 GB/s         36.085 GB/s | Throughput<br>5.691 kB/s                               |
|                                                                                                                         | GPU0->                                                                                                                                                                                                                                                                            | -GPU1 0 B/s 0 B/s<br>-GPU1 0 B/s 0 B/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 B/s                                                  |
| Version                                                                                                                 | NVLink version 1.0 GPU1-> GPU1->                                                                                                                                                                                                                                                  | CPU0         90.777 MB/s         36.031 GB/s           -CPU0         138.241 MB/s         33.14 GB/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.847 kB/s<br>1.949 kB/s                               |
|                                                                                                                         | Bandwidth usade by NVLink GPU2-> 90 - 100 % GPU2->                                                                                                                                                                                                                                | CPU1         96.692 MB/s         14.798 GB/s           -CPU1         141.799 MB/s         16.495 GB/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.791 kB/s<br>5.764 kB/s                              |
|                                                                                                                         | 70-80%<br>Topology Selected GPU2->                                                                                                                                                                                                                                                | GPU3         0 B/s         0 B/s           -GPU3         0 B/s         0 B/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 B/s<br>0 B/s                                         |
|                                                                                                                         | 50-60%<br>40-50%<br>30.40%                                                                                                                                                                                                                                                        | CPU1         96.856 MB/s         14.786 GB/s           -CPU1         142.063 MB/s         16.497 GB/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.863 kB/s<br>1.764 kB/s                              |
| olor codes for                                                                                                          | 20 - 30 %<br>10 - 20 %                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| NVI ink                                                                                                                 | 0-10%                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |

### NVLink events on timeline



### Multi-hop remote profiling - Application Profiling



| Connection:        | tk@10   | .24.204.242 ‡ Manage con                                              | nnections |  |  |  |  |  |  |
|--------------------|---------|-----------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Toolkit/Script:    | /home   | home/tk/remote_profiling.pl                                           |           |  |  |  |  |  |  |
| File:              | /home   | /compute_node/apps/matrixmul                                          | Browse    |  |  |  |  |  |  |
| Working directory: | Enter v | Enter working directory [optional] Brows Enter command-line arguments |           |  |  |  |  |  |  |
| Arguments:         | Enter c |                                                                       |           |  |  |  |  |  |  |
|                    | Profile | child processes                                                       | *<br>*    |  |  |  |  |  |  |
| Environment:       | Name    | Value                                                                 | Add       |  |  |  |  |  |  |
|                    |         |                                                                       | Delete    |  |  |  |  |  |  |
|                    |         |                                                                       |           |  |  |  |  |  |  |
|                    |         |                                                                       |           |  |  |  |  |  |  |
|                    |         |                                                                       |           |  |  |  |  |  |  |



Application transparently runs on compute node and profiling data is displayed in the Visual Profiler

| 8        | 😣 🖻 🗊 NVIDIA Visual Profiler      |        |         |                   |              |         |  |  |  |  |
|----------|-----------------------------------|--------|---------|-------------------|--------------|---------|--|--|--|--|
| <b>*</b> | 🖆 🔜 🖳 🖳 🗣 🗣 🛨 🗨 🔍 🖃 F 🥆 🔣 🚆 🚨 🦾 🔻 |        |         |                   |              |         |  |  |  |  |
| Ð        | ♦ *NewSession1 ☎                  |        |         |                   |              |         |  |  |  |  |
|          |                                   | 0.36 s | 0.365 s | 0.37 s            | 0.375 s      | 0.      |  |  |  |  |
|          | Process "matrixmul" (27514)       |        |         |                   |              |         |  |  |  |  |
| m        | Thread 1003218752                 |        |         |                   |              |         |  |  |  |  |
|          | Runtime API                       |        | c       | udaMalloc cudaMal | loc cudaFree | cudaFre |  |  |  |  |
|          | L Driver API                      |        |         |                   |              |         |  |  |  |  |
|          | Profiling Overhead                |        |         |                   |              |         |  |  |  |  |
|          | [0] GeForce GTX TITAN X           |        |         |                   |              |         |  |  |  |  |
|          | Context 1 (CUDA)                  |        |         |                   |              |         |  |  |  |  |
|          | - 🍸 MemCpy (HtoD)                 |        |         |                   |              |         |  |  |  |  |
|          | – 🍸 MemCpy (DtoH)                 |        |         |                   |              |         |  |  |  |  |
|          | <ul> <li>Compute</li> </ul>       |        |         |                   |              |         |  |  |  |  |
|          | - 🍸 100.0% dmatrixmu              |        |         |                   |              |         |  |  |  |  |
|          | <ul> <li>Streams</li> </ul>       |        |         |                   |              |         |  |  |  |  |
|          | Default                           |        |         |                   |              |         |  |  |  |  |
|          |                                   |        |         |                   |              |         |  |  |  |  |
|          |                                   | (4)    |         |                   |              |         |  |  |  |  |



### **CPU SAMPLING**

- CPU profile is gathered by periodically sampling the state of each thread in the running application.
- The CPU details view summarizes the samples collected into a call-tree, listing the number of samples (or amount of time) that was recorded in each function.

### **VISUAL PROFILER CPU** Sampling



20 📀 **DVIDIA** 

Selected thread

## PC SAMPLING

PC sampling feature is available for device with CC >= 5.2

Provides CPU PC sampling parity + additional information for warp states/stalls reasons for GPU kernels

Effective in optimizing large kernels, pinpoints performance bottlenecks at specific lines in source code or assembly instructions

Samples warp states periodically in round robin order over all active warps

No overheads in kernel runtime, CPU overheads to parse the records

### VISUAL PROFILER - PC SAMPLING Option to select sampling period

| 🗔 Analysis 🛅 GPU D             | Details (Summary) 🏦 CPU Details                                      | 🗖 OpenACC Details 📮 Console 🗔 Settings 🛿                                                                                    | <br>E |
|--------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Session NewSess                | ion1                                                                 |                                                                                                                             |       |
| Executable<br>Timeline Options | PCIe Override: Rerun analysis afte<br>Device: [0] Graphics Device \$ | r updating                                                                                                                  | P     |
| Analysis                       | PCIe Generation: 2                                                   | Override: Enter PCIe generation to use for analysis, allowed values are 2, 3 [optional, clear to use default]               |       |
|                                | PCIe Link Width: 4                                                   | Override: Enter PCIe link width to use for analysis, allowed values are 1, 2, 4, 8, 16, 32 [optional, clear to use default] |       |
|                                | PCIe Link Rate: 5 Gbit/s                                             | Override: Enter PCIe link rate to use for analysis in Mbits/s [optional, clear to use default]                              |       |
|                                | Sampling period: Rerun Kernel Pro                                    | Image: Select sampling period   Image: Select sampling period   Image: Select sampling period will be in 2^n cycles         |       |

### PC SAMPLING UI

### Pie chart for sample distribution for a CUDA function

Sample distribution





### Source-Assembly view

23 📀 nvidia

### **MULTI-PROCESS PROFILING**

When running nvprof with multiple processes, it's useful to label each process:

\$ nvprof -o timeline rank%q{OMPI COMM WORLD RANK} \

--context-name "MPI Rank %q{OMPI\_COMM\_WORLD\_RANK} \

--process-name "MPI Rank %q{OMPI\_COMM\_WORLD\_RANK} \

--annotate-mpi openmpi ...

### **MPI PROFILING** Importing into the Visual Profiler

|                                                                                                                   | ······································                                                                                                 |                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File     View     Window     Help       New     Session     Ctrl+N       Open     Ctrl+O                          |                                                                                                                                        | 4<br>© Import Nyprof Data                                                                                                                                                                                                                        |
| Save All Shift+Ctrl+S Import Exit                                                                                 |                                                                                                                                        | Import Profile Data for Multiple Processes Select nvprof profile files containing timeline data for multiple processes                                                                                                                           |
| 2                                                                                                                 | 3                                                                                                                                      | Profile Files Timeline Options Connection:  The nvprof profile files:                                                                                                                                                                            |
| Import Select Import profile data generated by nvprof.                                                            | Import Nvprof Data      Nvprof profile files      Import profile data for a single process or for     multiple processes      original | /home/apoorvaj/sw/gpgpu/bin/x86_64_Linux_debug/timeline.3.pdm       Browse         /home/apoorvaj/sw/gpgpu/bin/x86_64_Linux_debug/timeline.2.pdm       Remove         /home/apoorvaj/sw/gpgpu/bin/x86_64_Linux_debug/timeline.0.pdm       Remove |
| Select an import source:          type filter text       Image: Command-line Profiler         Nvprof       Nvprof | Single process     Multiple processes                                                                                                  |                                                                                                                                                                                                                                                  |
|                                                                                                                   |                                                                                                                                        | Normalize each profile file independently                                                                                                                                                                                                        |
|                                                                                                                   |                                                                                                                                        | Use fixed width segments for Unified memory timeline                                                                                                                                                                                             |
|                                                                                                                   |                                                                                                                                        | Number of segments Specify the number of segments for unified memory timelines [default 100]                                                                                                                                                     |
| < Back Next > Cancel Finish                                                                                       | < Back Next > Cancel Finish                                                                                                            | < Back Next > Cancel Finish                                                                                                                                                                                                                      |

### MPI PROFILING Visual Profiler



26 📀 nvidia.

# **PROFILER API**

Real applications frequently produce too much data to manage.

Profiling can be programmatically toggled:

```
#include <cuda_profiler_api.h>
cudaProfilerStart();
```

```
cudaProfilerStop();
```

...

This can be paired with nvprof:

```
$ nvprof --profile-from-start off ...
```

### **SELECTIVE PROFILING**

When the profiler API still isn't enough, selectively profile kernels, particularly with performance counters.

\$ nvprof --kernels :::1 --analysis-metrics ...

context:stream:kernel:invocation

Record metrics for only the first invocation of each kernel.

## **NVTX ANNOTATIONS**

The NVIDIA Tools Extensions (NVTX) allow you to annotate the profile:
 #include <nvToolsExt.h> // Link with -lnvToolsExt
 nvtxRangePushA("timestep");
 timestep();

```
nvtxRangePop();
```

See <u>https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx</u> for more features, including V3 usage.

### **NVTX IN VISUAL PROFILER**



30 📀 nvidia.

## **EXPORTING DATA**

It's often useful to post-process nvprof data using your favorite tool (Python, Excel, ...):

It's often necessary to massage this file before loading into your favorite tool.

### OpenAcc->Driver API->Compute correlation

# **OPENACC PROFILING**



OpenAcc timeline

### **OPENMP PROFILING**

Information about OpenMP regions using the OpenMP tools interface (OMPT) starting CUDA 10.0

Supported on x86\_64 and Power Linux with PGI runtime 18.1+

Supported added in the CUPTI, nvprof and Visual Profiler

# **OPENMP PROFILING IN NVPROF**

### nvprof option openmp-profiling to enable/disable the OpenMP profiling, default on

| nvprof openmp-profiling on ./omp-app                                 |         |         |          |       |          |          |          |                  |  |  |
|----------------------------------------------------------------------|---------|---------|----------|-------|----------|----------|----------|------------------|--|--|
|                                                                      | Туре    | Time(%) | Time     | Calls | Avg      | Min      | Max M    | Name             |  |  |
| OpenMP                                                               | (incl): | 99.97%  | 277.10ms | 20    | 13.855ms | 13.131ms | 18.151ms | omp_parallel     |  |  |
|                                                                      |         | 0.03%   | 72.728us | 19    | 3.8270us | 2.9840us | 9.5610us | omp_idle         |  |  |
|                                                                      |         | 0.00%   | 7.9170us | 7     | 1.1310us | 1.0360us | 1.5330us | omp_wait_barrier |  |  |
| Optionprint-openmp-summary to print a summary of all recorded OpenMP |         |         |          |       |          |          |          |                  |  |  |

\$

activities

### **OPENMP PROFILING IN VISUAL PROFILER**

| 🕵 NVIDIA Visual Profiler       |               |                     |                   |                |                  |         |        |        |       |                |        | - • •        |
|--------------------------------|---------------|---------------------|-------------------|----------------|------------------|---------|--------|--------|-------|----------------|--------|--------------|
| File View Window Run Help      |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
| 💺 *openmp.prof 🔀               |               |                     |                   |                |                  |         |        |        |       |                |        | - 8          |
|                                | 0 s 0.01      | s 0.02 s            | 0.03 s 0          | .04 s 0.0      | 5 s 0.06 s       | 0.07 s  | 0.08 s | 0.09 s | 0.1 s | 0.11 s         | 0.12 s | 0.13 s       |
| Process 0                      |               |                     |                   |                |                  |         |        |        |       |                |        |              |
| Thread 0                       |               |                     |                   |                |                  |         |        |        |       |                |        |              |
| - OpenMR                       | OMP_P OMP     | Par OMP_Par OM      | P_Pa OMP_P (      | OMP_P OMP_P    | OMP OMP_         | OMP OMP |        |        |       |                |        |              |
| - Openimp                      |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
| 🔄 Analysis 🔛 GPU Details (Summ | ary) 🏢 CPU De | tails 📺 OpenACC Det | ails 🛛 🚛 OpenMP L | Details 💥 🚊 Co | insole 📑 Setting | 5       |        |        |       | 🗏 Properties 💥 |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       | OMP_Parallel   |        |              |
| Name                           | %             | Time                | Calls             |                |                  |         |        |        |       | Start          |        | 51.90515 ms  |
| OMP Parallel                   | 99.976%       | 123.33896 ms        | 20                |                |                  |         |        |        |       | End            |        | 58.14554 ms  |
| OMP_Wait_barrier               | 0.331%        | 0.40816 ms          | 19                |                |                  |         |        |        |       | Duration       |        | 6.2404 ms (6 |
| OMP_Idle                       | 0.074%        | 0.0907 ms           | 19                |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |
|                                |               |                     |                   |                |                  |         |        |        |       |                |        |              |

### OPENMP PROFILING IN VISUAL PROFILER Table View

| 🗔 Analysis 🔜 GPU Details (Summary) | CPU Details | 🏢 OpenACC Detail | s 🕞 OpenMP Deta | ails 🛛 | 📃 Console | Settings |  |  |
|------------------------------------|-------------|------------------|-----------------|--------|-----------|----------|--|--|
|                                    |             |                  |                 |        |           |          |  |  |
| Name                               | %           | Time             | Calls           |        |           |          |  |  |
| OMP_Parallel                       | 93.895%     | 5.4 s            | 3003            |        |           |          |  |  |
| OMP_Idle                           | 16.619%     | 0.9 s            | 3002            |        |           |          |  |  |
| OMP_Wait_barrier                   | 7.528%      | 0.4 s            | 3001            |        |           |          |  |  |
|                                    |             |                  |                 |        |           |          |  |  |
|                                    |             |                  |                 |        |           |          |  |  |
|                                    |             |                  |                 |        |           |          |  |  |

# PROFILING NVLINK USAGE

Using nvprof+NVVP

Run nvprof multiple times to collect metrics

jsrun <args> nvprof --output-profile profile.<metric>.%q{OMPI\_COMM\_WORLD\_RANK} \

--aggregate-mode off --event-collection-mode continuous

--metrics <metric> -f

Use `--query-metrics` and `--query-events` for full list of metrics (-m) or events (-e)

Combine with an MPI annotated timeline file for full picture

### SUMMIT NVLINK TOPOLOGY

#### Results

#### i NVLink Analysis

The following NVLink topology diagram shows logical NVLink connections between GPUs and CPUs. A logical NVLink can contain one or more physical links. When two devices A and B are connected by an NVLink, the receive throughput of device A is same as the transmit throughput of device B. The tables on right hand side show the properties for each logical NVLink.

\* NVLink utilization may vary in accuracy, because any activity within the sampling period is treated as active, even though most of that period could be idle.



| Logical NVLink | PeakBandwidth | PhysicalNVLinks | PeerAccess | SystemAccess | PeerAtomic | SystemAtomic | Utilization % | lo |
|----------------|---------------|-----------------|------------|--------------|------------|--------------|---------------|----|
| GPU0<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| GPU0<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU0<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU0<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU0<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU0<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU1<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| GPU1<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU1<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU1<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU1<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU2<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| GPU2<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU2<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU2<>GP       | 84 GB/s       | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU3<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| GPU3<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU3<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU4<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| GPU4<>GP       | 100 GB/s      | 2               | Yes        | No           | Yes        | No           | 0             |    |
| GPU5<>CP       | 100 GB/s      | 2               | No         | Yes          | No         | Yes          | 0             |    |
| <              |               |                 |            |              |            |              |               | >  |

#### Logical NVLink Properties

# **CPU PAGE FAULT SOURCE CORRELATION**

| Unguided Analysis                                                                        |                                                                                                                               | Summary of all<br>CPU page faults |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
|                                                                                          |                                                                                                                               |                                   |  |  |  |  |
| 🗏 📃 🗘 🖪 Reset All                                                                        | Results                                                                                                                       |                                   |  |  |  |  |
| To enable kernel analysis stages select a host-launched kernel instance in the timeline. |                                                                                                                               |                                   |  |  |  |  |
| Application                                                                              | The following table shows the top locations where CPU page faults occurred (Double-click to open the location in source code) |                                   |  |  |  |  |
| Data Movement And Concurrency 📀                                                          | CPU page faults                                                                                                               | Source location N                 |  |  |  |  |
| Compute Utilization                                                                      | 1001                                                                                                                          | main@jacobi.cu:130                |  |  |  |  |
|                                                                                          | 1001                                                                                                                          | main@jacobi.cu:130                |  |  |  |  |
| Kernel Performance                                                                       | 4                                                                                                                             | Unknown                           |  |  |  |  |
| Desendes av Aselvais                                                                     | 2                                                                                                                             | Unknown                           |  |  |  |  |
|                                                                                          | 1                                                                                                                             | _Z4initPfS_iiS_i@jacobi.cu:85     |  |  |  |  |
| NVLink                                                                                   | 1                                                                                                                             | Unknown                           |  |  |  |  |
| Unified Memory 🗸                                                                         |                                                                                                                               |                                   |  |  |  |  |

Option to collect Unified Memory information

