
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Python on Summit

Matt Belhorn
Oak Ridge Leadership Computing Facility
Summit Training Workshop
6 December 2018

2 Credit: https://xkcd.com/1987/

...more so in HPC

Python environments can get messy...

supercomputer

3

Provided Python Environments and Extensions

l Anaconda Distributions
- Includes commonly used packages out-of-the box
- Extended, customized with conda environments

l Minimal native python environment modules
- OLCF can’t feasibly provide env modules for every extension

- Extend the base with your own virtualenvs

l DIY is always an option
- More work, but also more stable and tuned to your needs.

4

Anaconda

• Provided via modulefile on Summit, Ascent
– python/{M}.{m}.{u}-anaconda{M}-{REL}

• PYTHONUSERBASE set to unique location
– ${HOME}/.local/${HOST}/python/${MODULENAME}

• Relies heavily on pre-compiled binaries

• Extended through conda environments

• conda similar to pipenv: package manager, virtual environment
all-in-one

{M}: Python Major Version
{m}: Python minor Version
{u}: Python micro Version
{REL}: Anaconda Release

5

Native Python (from environment modules)

• Provided via module files
– module load python/{M}.{m}.{u}
– Versions 3.7.0 and 2.7.15 from Jan 1
– 3.5.2 and 2.7.12 also on some systems

6

Native Python (from environment modules)

• Basic packages included in root site-packages*
– virtualenv, pip, setuptools, etc for setting up virtualenvs.
– Only for python interpreters outside a compiler environment. Unload all

compilers to get a python environment with these pre-installed to setup
a virtualenv.

• OLCF no-longer providing lots of extensions via environment
modules
– Some packages still provided by environment modules. Eg, mpi4py
– Will consider generic, unoptimized numpy/scipy/matplotlib, and

pure-python extensions
– Generally you will need to setup a virtualenv for additional extensions

7

Native Python (from environment modules)

• Bindings for specific external frameworks no longer provided
this way (h5py, pynetcdf, etc)
– Packages with specific external dependencies (scipy, numpy) may be

present but not recommended for use
– Build these for your own needs

• Extension env modules do not load their dependencies
– Neither external libraries
– Nor extra (often required) python extensions

8

Providing your own extensions

• Python packages can exist anywhere: add to PYTHONPATH

• But avoid PYTHONPATH pollution
– packages for varying python versions, machine architectures, and

external dependencies
– Major problem providing packages via environment modules
– Not recommended to modify the PYTHONPATH in your shell init files

• Easiest solution: use virtualenvs or conda envs

9

Creating Conda Environments

• Pre-compiled packages pulled from channels
– Generally comes with pre-compiled external dependency libraries
– Binaries typically optimized for generic architectures
– Pre-compiled binaries don’t always work on HPC resources
– Building packages from source possible

conda create <pkgs>... -c <channel> -p <path>
source activate <conda_env>
conda install numpy pyyaml [<pkg>…]
pip install --no-binary mpi4py install mpi4py
source deactivate

10

Venv/Virtualenvs

• Provides isolated python environment

• python3: python3 -m venv <path>

• python2: virtualenv <path>

• Activate several ways
– from command line: . <path>/bin/activate; deactivate
– from shebang line: #!/path/to/venv/bin/python3

• Load all environment modules first, deactivate to before
changing environment modules

11

Building Packages from Source

• Can be tricky in HPC environment

• Easier to manage at a personal level than for site-provided
environment modules that work for everyone

• Let pip do it for you:
[CC=gcc MPICC=mpicc] pip install \

-v --no-binary <pkg> <pkg>

• Or use distutils/setuptools: python setup.py install
– Check package docs. May need to get creative passing HPC

environment parameters.

12

General Guidelines

• Follow PEP394 (https://www.python.org/dev/peps/pep-0394/)
– Call python2 or python3 instead of ambiguous python
– Same in scripts: #!/usr/bin/env python2 or #!/usr/bin/python3

• Python environments generally don’t mix
– conda envs
– Virtualenvs
– Native python

13

General Guidelines

• Avoid mixing virtualenvs and python extension env modules
– Environment module changes generally conflict with virtualenvs
– Use venv python in script shebang lines
– eg: #!/path/to/your/venv/bin/python3

• Use care with pip install --user ...
– Ensure $PYTHONUSERBASE is unique to python version and machine

architecture.
– $HOME is shared on a variety of architectures.

Thanks for listening

l Questions or comments regarding the
Summit programming environment?

Contact `help@olcf.ornl.gov`

We’re happy to help with any issues
and questions you have.

Backup

16

What about ML/DL?

ML package

• Tensorflow, PyTorch, Keras, etc.
usually require extra
dependencies.

• Some of these claim to be
provided by Anaconda for
ppc64le, but that’s not always
a truthful claim.

• We are working on other, non-
anaconda solutions for these
packages.

• In the meantime…

17

What about ML/DL?
module load python/3.7.0-anaconda3-5.3.0
conda create tensorflow-gpu \

keras-gpu \
ipython \
-p ~/tf_conda_env

bsub -P stf007 -n1 -W 60 -Is $SHELL
source activate ~/tf_conda_env
jsrun … ~/tf_keras_test.py

#!/usr/bin/env python3
import tensorflow as tf
import keras
mnist = keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = keras.models.Sequential([
keras.layers.Flatten(),
keras.layers.Dense(512, activation=tf.nn.relu),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation=tf.nn.softmax)

])
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

18

Matplotlib Backends

• Matplotlib backends
– In scripts:
import matplotlib
matplotlib.use(‘tkagg’) # not case sensitive
import matplotlib.pyplot as plt

– Globally:
cat ~.matplotlib/matplotlibrc
backend : tkAgg

19

Resources

l Venv/Virtualenv
- venv (py3): https://docs.python.org/3.6/library/venv.html
- virtualenv (py2): https://virtualenv.pypa.io/en/stable/

l Anaconda Documentation
- conda: https://conda.io/docs/user-guide/getting-started.html
- Installing your own: https://conda.io/docs/user-guide/install/linux.html

l Check the package documentation
- Installation procedure in package docs is often not as simple as

described when applied to an HPC environment.

20

cat $HOME/.condarc
envs_dirs:
- /ccs/proj/<projid>/<user>/virtualenvs/<host>...
- /ccs/home/<user>/.local/share/virtualenvs/<host>...

Conda Initial Setup

• Setup your conda config to put conda envs on NFS filesystem.

• Recommended to use /ccs/proj/<projid>; not $HOME

• Recommended to use env names that separate project and
host.

21

Source Installs with Pip

l Most python packages assume use of GCC.
l Use the --no-binary flag to build packages from source.

- Comma separated list of packages or :all:
- Use verbose output -vv to identify build errors.

l Check package documentation for configuration.

l External dependency env modules must be loaded at runtime

module load hdf5 # sets HDF5_DIR envvar
source /path/to/venv/bin/activate
CC=gcc HDF5_MPI=”ON” HDF5_VERSION=1.10.2 pip install -v --no-binary=h5py h5py

22

Setuptools and distutils Source Builds

• Allows complex builds by
– editing `setup.cfg` (or other, see package docs)
– passing arguments to `setup.py configure`

• Global distutils options
– Set in your user-config (~/.pydistutils.cfg)
– or a temporary (preferred) site-config using

setup.py setopt or setup.py saveopt
– https://setuptools.readthedocs.io/en/latest/setuptools.html#configuration-file-options

• See setup.py --help-commands for build steps

23

Setuptools and distutils Source Builds

module load hdf5
. /path/to/venv/bin/activate
python setup.py configure --hdf5=$HDF5_DIR
python setup.py configure --hdf5-version=1.10.2
python setup.py configure --mpi
python setup.py install

24

Conda source builds

• Try to use conda first w/ alternate channels
– https://conda.io/docs/user-guide/tasks/manage-pkgs.html

• Can use pip or setuptools to install PyPI packages as normal
with venv
– This doesn’t use libraries provided by pre-built conda packages

• Use conda-build to make your own “portable” conda
packages from recipes.
– More complex; bundles dependencies into a pre-built collection for

distribution, nominally from anaconda channels.
– https://conda.io/docs/user-guide/tasks/build-packages/install-conda-build.html#install-conda-build
– https://conda.io/docs/user-guide/tutorials/build-pkgs.html

https://conda.io/docs/user-guide/tasks/manage-pkgs.html
https://conda.io/docs/user-guide/tasks/build-packages/install-conda-build.html
https://conda.io/docs/user-guide/tutorials/build-pkgs.html

