Storage Areas / Data Transfers George S. Markomanolis, HPC Engineer Oak Ridge National Laboratory Summit Training Workshop 3 December 2018 #### Outline - Storage Areas - Available file systems and options for archiving - Data Transfer - Transfer your files between Titan and Summit ## Summit and filesystems #### **NFS** - User home: /ccs/home/\$USER - Project home: /ccs/proj/[projid] - Long-term storage for your general data under home or related to project under proj - Build your code in /tmp/\$USER it is faster and install in /ccs/proj/[projid] - There is provided a backup - User home is not accessible from compute nodes - Project home is accessible only for reading from the compute nodes - Not purged - Quota of 50GB - User home is user-centric ### NFS (cont.) Check quota on user home > quota -Qs Disk quotas for user gmarkoma (uid 14850): Filesystem blocks quota limit grace files quota limit grace nccs-svm1.lb.ccs.ornl.gov:/nccs/home2 3237M 51200M 51200M 49161 4295m 4295m ### NFS (continue) - I deleted a file from my NFS, how to recover it? - Answer: snapshots - Go to the .snapshot folder (Is will not show this folder): - cd \$HOME/.snapshot ``` ls -I drwx----- 27 gmarkoma gmarkoma 4096 Nov 21 16:51 daily.2018-11- 23_0010 drwx----- 27 gmarkoma gmarkoma 4096 Nov 21 16:51 daily.2018-11- 24_0010 ... ``` #### **HPSS** - User archive: /home/\$USER - Project archive: /proj/[projid] - Long-term storage for large amount of general data under home or related to project under proj. - Quota of 2 TB and 100 TB for user and project archive respectively. Maximum 68 GB size per file and max 1 million files per archive - Not purged - User archive is user-centric ## HPSS (cont.) Check HPSS quota: | > showusage -s hpss | | | | | | |---------------------|----------|---------|--|--|--| | HPSS Storage in GB: | | | | | | | Project Totals | | | | | | | Project | Storage | Storage | | | | | | | | | | | | stf007 | 46868.90 | 0.00 | | | | | | | | | | | ### Alpine Alpine, is a Spectrum Scale (ex-GPFS) file system of 250 PB of used space, which is mounted on Summit and Data Transfer Nodes (DTN) with maximum performance of 2.5 TB/s for sequential I/O and 2.2 TB/s for random I/O It is constituted by 154 Network Shared Disk (NSD) servers • It is a shared resource among users, supporting File Per Process (FPP), Single Shared File (SSF) and any combination ### Alpine (cont.) - Memberwork: - Short-term storage of user data related to the project but not shared - Projwork: - Short-term storage of project data shared among the members of the project - Worldwork: - Short-term storage of project data shared with OLCF users outside the project - No backup - Quota 50 TB - Purged after 150 days # Storage policy | Name | Path | Туре | Permissions | Backups | Purged | Quota | |-----------------|---|----------------|-------------|---------|----------|-------| | User Home | \$HOME | NFS | User Set | yes | no | 50GB | | User Archive | /home/\$USER | HPSS | User Set | no | no | 2TB | | Project Home | /ccs/proj/[projid] | NFS | 770 | yes | no | 50GB | | Member Work | /gpfs/alpine/scratch/[userid]/[projid]/ | Spectrum Scale | 700 | no | 150 days | 50TB | | Project Work | /gpfs/alpine/proj-shared/[projid] | Spectrum Scale | 770 | no | 150 days | 50TB | | World Work | /gpfs/alpine/world-shared/[projid] | Spectrum Scale | 775 | no | 150 days | 50TB | | Project Archive | /proj/[projid] | HPSS | 770 | no | no | 100TB | #### Data Transfer Data Transfer Nodes (DTN) improve the performance by reducing the load on the login and service nodes of the HPC facilities. Moreover, transfer data outside the HPC facility. ### Data Transfer (cont.) - When you log-in to Summit you would like to have access to your old files (if you are already user of OLCF HPC facilities) - There are many ways to transfer files but in general we propose Globus - We will mention all the approaches and some performance results. ### Data Transfer (cont.) - Using home NFS - If the data size is less than 50 GB and there is enough free space in your home directory is through home. titan> cp -r data \$HOME summit> cp -r \$HOME/data. It is simple, but is it fast? ### Data Transfer (cont.) - Using HPSS - Send one folder to HPSS and retrieve it from the destination. There is significant higher data size limit summit> htar -xvf transfer_test.tar ``` titan> htar -cvf transfer_test.tar transfer_test/* HTAR: a transfer_test/data0.txt HTAR: a transfer_test/data10.txt ... HTAR: a /tmp/HTAR_CF_CHK_8183_1543522594 HTAR Create complete for transfer_test.tar. 23,068,684,800 bytes written for 22 member files, max threads: 3 Transfer time: 186.324 seconds (123.809 MB/s) wallclock/user/sys: 186.521 30.654 105.275 seconds HTAR: HTAR SUCCESSFUL ``` ### Transferring files through NFS and HPSS ``` titorols -l SAPRE THE total 1824816 -rw-r--r-- 1 gmarkoma gmarkoma 1848576000 Dec. 1 09:52 data.txt titan-htpr.-cvf small_transfer.tar data.txt HTAR: a data.txt HTAR: 0 /tmp/HTAIL_CF_CHK_52054_1543676913 HTAR Create complete for small_transfer.tar. 1,048,578,048 bytes written for 1 member files, max threads: 3 Transfer time: 8.469 seconds (123L811 MB/s) wallclock/user/sys : 8.562 1.388 4.796 seconds HTAR: HTAR SUCCESSFUL titon- ``` #### **Globus** - Globus transfers fast, parallel and reliable files between two endpoints - Endpoints are different locations where data can be moved using the Globus transfer - Visit <u>www.globus.org</u> to register and/or login - You can find few OLCF endpoints such as OLCF Atlas. However, on 11th December we'll define the OLCF DTN globus endpoint where both Lustre and Spectrum Scale will be mounted and possible to transfer files. You will receive the official announcement soon. ### Globus(cont.) The globus endpoint will be OLCF DTN on 11th December, it is not available yet! #### Globus demo, transfer from Titan to Summit #### Performance Results Study case: Transfer data from Atlas to Alpine with 3 approaches. Copy the files through NFS, use HPSS, or use Globus | Туре | Home NFS | HPSS | Globus | | | | |-------------------------------|--|------|--------|--|--|--| | | Time in seconds to finish the transfer | | | | | | | Transfer 22 files of 1GB each | 323 | 270 | 10 | | | | | Transfer 1 file of 22 GB | 308 | 301 | 80 | | | | | Transfer 4 files of 1GB each | 69 | 53 | 9 | | | | - Globus is the most efficient approach to transfer files for all the evaluated cases, for small files though, transferring through NFS should be efficient. - There are available some traditional tools such as scp, rsync - The tests took place on 29th November #### DTN As long as we have both Atlas and Alpine on DTN, we use the following variables (GPFS variables are not active yet) ### Acknowledgement This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. Thank you! Questions?