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Outline

Some linear algebra software technologies for Exascale
* Mixed-precision solvers using GPU Tensor Cores
- Batched linear algebra for many small problems

* Redesign of LAPACK and ScaLAPACK for new architectures
— MAGMA and SLATE libraries

* Accelerating memory-bound codes
— The case of redesigning 3D FFTs for GPU-only execution
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Linear Algebra in Applications

 Dense Linear Algebra (DLA) is needed in a wide variety of science and engineering applications:
* Linear systems: Solve Ax =b

- Computational electromagnetics, material science, applications using
boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

Least squares: Find x to minimize || Ax-b (|

+ Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more

Eigenproblems: Solve Ax =A x

«  Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

- SVD: A=UZV*(Au=ovandA® =0u)

* Information retrieval, web search, signal processing, big data analytics, low rank
matrix approximation, total least squares minimization, pseudo-inverse, and many more

Many variations depending on structure of A

»  Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

- Batched LA on many small DLA problems
* FFTs
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UTKI/ICL involved in ECP projects providing various
high-performance linear algebra functionalities

- SLATE

— Provides SOA algorithmic and technology innovation in dense linear algebra software

- FFT-ECP

— Design and implement a sustainable 2D/3D FFT library for Exascale systems

* xXSDK

— Provides interoperability across existing numerical libraries hypre, PETSc, SuperLU, Trilinos,
MAGMA, PLASMA and DPLASMA

- CEED

— Co-Design next-generation discretization software and algorithms that will enable a wide
range of FE applications
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MAGMA Today

MAGMA - provides highly optimized LA well beyond LAPACK for GPUs;
— research vehicle for LA on new architectures for a number of projects.

for architectures in

{ CPUs + Nvidia GPUs (CUDA),
CPUs + AMD GPUs (OpenCL),
CPUs + Intel Xeon Phis,
manycore (native: GPU or KNL/CPU),
embedded systems, combinations, and
software stack, e.g., since CUDA x}

for precisions in

{s,d,cz
half-precision (FP16),
mixed, ... }

for interfaces

» LAPACK

* BLAS

» Batched LAPACK
- Batched BLAS

« Sparse

* Tensors
 MAGMA-DNN

» Templates

{ heterogeneous CPU/GPU, native, ...

}

Collaboration and support from vendors
NVIDIA, Intel, and AMD

Two releases per year

Latest MAGMA 2.5.1

Number of downloads per release ~ 4K

Highly tuned for latest GPUs and heterogeneous architectures

MAGMA Forum:
3,248 + 279 (3,527) posts in 869 + 78 (955) topics, 1,841 + 1057 (2,898) users

MAGMA is incorporated/used in

MATLAB (as of the R2010b),

contributions in CUBLAS and MKL,

AMD, Siemens (in NX Nastran 9.1), ArrayFire,
ABINIT, Quantum-Espresso, R (in HIPLAR & CRAN),
SIMULIA (Abaqus), MSC Software (Nastran and Marc),
Cray (in LibSci for accelerators libsci_acc),
Nano-TCAD (Gordon Bell finalist),

Numerical Template Toolbox (Numscale), and others.

MAGMA used in ECP - CEED, PEEKS, xSDK, ALEXA/TASMANIAN, SLATE & FFT
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Why use GPUs in HPC?

PERFORMANCE & ENERGY EFFICIENCY

MAGMA 2.5.1 LU factorization in double precision arithmetic

Performance GFLOP/s

Intel Xeon E5-2650 v3 (Haswell)

NVIDIA Kepler GPU NVIDIA Pascal GPU NVIDIA Volta GPU
PU 2x10 cores @ 2.30 GHz m 15MP x 192 @ 0.88 GHz m 56 MP x 64 @ 1.19 GHz V100 80 MP x 64 @ 1.38 GHz
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Mixed-precision LA

* \/100 GPUs have hardware
acceleration for FP16 arithmetic

* Tensor Cores (TC) capable of
125 Tflop/s in FP16

ORNL Summit Supercomputer
200-Petaflops System Debuts as America’s Top Supercomputer for SC|ence
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https://www.ornl.gov/news/ornl-launches-summit-supercomputer
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Mixed-precision LA

* \/100 GPUs have hardware

acceleration for FP16 arithmetic
Tensor Cores (TC) capable of
125 Tflop/s in FP16

 Can we use it for scientific computing?
» Max representable value is 65504
About 3.3 decimal digits of precision

exponent fraction
sign (5 bit) (10 bit)
|| | |
O O O
15 10 0

ORNL Summit Supercomputer
200-Petaflops System Debuts as America’s Top Supercomputer for Science
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‘node Total System Memory 710 Tli . B
L = e Dual Rail EDR-IB (23 GB/s) |
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J et
between  Interconnect Topology 3D Torus e . Non blockmg Fat Tree _3
2 1 AMD Opteron™ 2 IBM POWER9™ |
- Processors
' IDIA Kepler™ 6 NVIDIA Volta™
esystem 1 NVIDIA Kepler AVolta™

File System 32PB, 1 TB/s, Lustre” 250 PB 2 5 TB/s GPFS
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Mixed-precision LA

Each TC performs 64 floating point FMA mixed-precision operations per clock

D =

FP16 or FP32

(

FP16
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FP16
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Tensor Core Accelerated IRS
solving linear system Ax =Db

SOIVing Iinear SyStem AX = b « LU factorization is used to solve a
LU factorization linear system Ax=b

o . I I

LUx=Db .‘ I=I
v N |=|
then

Ux =y
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Tensor Core Accelerated IRS
solving linear system Ax =Db

For s=0,nb,.. N

1. panel factorize
trailing

nb
«—> U
I -
step 1 step 2 step 3 step 4
S | ! ! !

update @@ @@ @@ @@ @@ @@ i&ﬁkg@
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Tensor Core Accelerated IRS
Motivation

Study of the Matrix Matrix multiplication kernel on Nvidia V100

« dgemm achieve about 6.4 Tflop/s
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Tensor Core Accelerated IRS
Motivation

Study of the Matrix Matrix multiplication kernel on Nvidia V100

—————— « dgemm achieve about 6.4 Tflop/s
e FPos souare |+ sgemm achieve about 14 Tflop/s
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Tensor Core Accelerated IRS
Motivation

Study of the Matrix Matrix multiplication kernel on Nvidia V100

T O A S S « dgemm achieve about 6.4 Tflop/s
@Fgég squarel| * sgemm achieve about 14 Tflop/s
=%-FP64 square  hgemm achieve about 27 Tflop/s
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Tensor Core Accelerated IRS
Motivation
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Study of the Matrix Matrix multiplication kernel on Nvidia V100

2NN — NN

— T —T—— dgemm achieve about 6.4 Tflop/s

FP16 TC square

FP16 square

FP32 square
=¢=-FP64 square

sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM
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Tensor Core Accelerated IRS
Motivation
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Study of the Matrix Matrix multiplication kernel on Nvidia V100

2NN — NN

— T —T—— dgemm achieve about 6.4 Tflop/s

FP16 TC square

FP16 square

FP32 square
=¢=-FP64 square

sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM
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Tensor Core Accelerated IRS

Motivation
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Study of the Matrix Matrix multiplication kernel on Nvidia V100

-e-II=P16 'II'C squlare I
| = =1 FP16 TC k=256

-°-F|P16 square
= = | FP16 k=256

sssEEmEmEms®
s ® SaggguuunsmmmEd

= m 1 FP32 k=256
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-“-FP|64 sqlljare
= = 1 FP64 k=256
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m=n

« dgemm achieve about 6.4 Tflop/s
« sgemm achieve about 14 Tflop/s
 hgemm achieve about 27 Tflop/s
« Tensor cores gemm reach about 85 Tflop/s

Rank-k GEMM needed by LU
does not perform as well as
square but still OK

Matrix matrix multiplication GEMM

C |=a| A B +B C
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Leveraging Half Precision in HPC on V100
Motivation

Study of the LU factorization algorlthm on Nv1d1a V100
» LU factorization is used to solve a

26 |- - - :
IEII;}g :Ce(t':';elr:lsjor Cores) hgetrf LU ’ linear system Ax=b
24 - FP32 sg Setrf LU ’ ] A x=Db
29 | |=¥=FP64 dgetrf LU | =
20 - A |
18 - ! N
Ry 34X - LUx=b “ I=I
_8-1 4+ .
E12} :
10+ .. }
‘ ==
ol Z, ‘ ty =P -
6 ’// _
4l /’fﬁ/ | then
2 I _ ’ : | UX ) y ‘ I I
0 | | | | | | | | | |
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k e UNIVERSITYof
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Tensor Core Accelerated IRS
solving linear system Ax = b

Use Mixed Precision algorithms

Idea: use lower precision to compute the expensive flops (LU O(n®)) and
then iteratively refine the solution in order to achieve the FP64 arithmetic

» Achieve higher performance - faster time to solution
> Reduce power consumption by decreasing the execution time = Energy Savings !!!
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Tensor Core Accelerated IRS
solving linear system Ax = b

Idea: use lower precision to compute the expensive flops (LU O(n®)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision o(n?)
r=>b- Ax FP64 precision O(n?)

WHILE || r || not small enough
1. find a correction “z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

> z = U\(L\r) Classical Iterative Refinement lower precision Oo(n?)

> GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n?)

2. X=X+2 FP64 precision O(n!)

3. r=b - Ax FP64 precision O(n?)
END

» Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
> E. Carsonand N. J. Higham. Accelerating the solution of linear systems by iterative refinement in three precisions.
» It can be shown that using this approach we can compute the solution to 64-bit floating point precision.



Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

i FP16-TC->64 dhgesv| | | | | meaning twice higher is twice faster
22 --©=FP16->64 dhgesv
20| *Fggﬁ'igis"vsges“ ............ J10°
181 e . solving AX = b using FP64 LU
TR 110
14}
§'1 2 : 103 %\g
F 1ol o=
8 - ‘5102
5 ;
4 E 10’
2
0 10°

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

[Tl IR Y = s

Problem generated with an arithmetic distribution of the singular values ¢; =1 — (,’;%11)(1 — ﬁ) and positive eigenvalues. ;NEIP%?EEQ
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Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

~FP16-TC->64 dhgesV|
22 - FP16->64 dhgesv
FP32->64 dsgesv
20 - =2¢=-FP64 dgesv

meaning twice higher is twice faster

|II|
-
o
($)]

» solving Ax = b using FP64 LU

18 -

16 » solving Ax = b using FP32 LU and
14 iterative refinement to achieve FP64
812 accuracy
F 10

o N B O

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

BN O e e s

Problem generated with an arithmetic distribution of the singular values ¢; =1 — (,i_Tll)(l — ﬁ) and positive eigenvalues. ;NEIP%?EEQ
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Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

24
FP16-TC->64 dhgesv| | | | | meaning twice higher is twice faster
22 -«©=FP16->64 dhgesv
FP32->64 dsgesv 110°
20Hp&FPeadgesy | e 5 : )
18l : « solving Ax = b using FP64 LU
16+ « solving Ax = b using FP32 LU and
w141 iterative refinement to achieve FP64
38'12 R accuracy
F10- » solving Ax = b using FP16 LU and
8 iterative refinement to achieve FP64
6| accuracy
4 L
2 L
0 10°

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Il el A s
Problem generated with an arithmetic distribution of the singular values ¢; =1 — (,’Z_Tll)(l — ﬁ) and positive eigenvalues. ’NEIP%?EEQ
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Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

24 -
FP16-TC->64 dhgesv| | | | | E meaning twice higher is twice faster
22 -«©=FP16->64 dhgesv -
FP32->64 dsgesv 110°
20 \y¢FPeadgesv | 7 .) - . :
18l « solving Ax = b using FP64 LU
1404 . :
16 110 » solving Ax = b using FP32 LU and
w141 . iterative refinement to achieve FP64
38'12 . ; 10° 38 accuracy
F10+ ©  « solving Ax = b using FP16 LU and
8 | 1102 iterative refinement to achieve FP64
6| accuracy
1 . .
4r 3110 « solving Ax = b using FP16 Tensor Cores
2 - f LU and iterative refinement to achieve
0 10° FP64 accuracy

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Il el A s
Problem generated with an arithmetic distribution of the singular values ¢; =1 — (,’Z_Tll)(l — ﬁ) and positive eigenvalues. ’NEIP%?EEQ
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Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b

o4 - usmg FP64 or IR with GMReIs to aclhleve I.:P64 acI:curacyg _ Flops = 2n3/(3 time)
FP16-TC->64 dhgesv| 3 J ] meaning twice higher is twice faster
22 -|-@=FP16->64 dhgesv 2 1
FP32->64 dsgesv 110°
20 -|-9¢-FP64 dgesv L iR ] ) .
181 e 2 I 5 ] » solving Ax = b using FP64 LU
: V. |, 4 . .
16 7 ' 110 « solving Ax = b using FP32 LU and
w141 ’ : iterative refinement to achieve FP64
S12! b 2 4110° accuracy
= 2 : A g
F10+ ‘ ©  « solving Ax = b using FP16 LU and
8 | 4102 iterative refinement to achieve FP64
6| accuracy
1 . .
4r 110 « solving Ax = b using FP16 Tensor Cores
2 - _ LU and iterative refinement to achieve
0 10° FP64 accuracy

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Tl G Y = = z
1 Lo ”'“,NNESSEE
cond) and positive eigenvalues. iment of Electical Engineering

e dCompt S

Problem generated with an arithmetic distribution of the singular values o; = 1 — (,’;_Tll)(l —



Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b

20 - usmg FP64 or IR with GMRes to achieve FP64 accuracy1 A Flops = 2n3/(3 time)
FP16-TC->64 dhgesv| | | | 14 ; meaning twice higher is twice faster
18 -|=@=FP16->64 dhgesv ]
FP32->64 dsgesv 5
o e S e e ) ) ?10 « solving Ax = b using FP64 LU
ar e 110% + solving Ax = b using FP32 LU and
@ 12 = iterative refinement to achieve FP64
§1o i 110 38 accuracy
F gl ©  « solving Ax = b using FP16 LU and
6| 4102 iterative refinement to achieve FP64
: accuracy
4 - 330] . 1 : :
y 10 « solving Ax = b using FP16 Tensor Cores
21 : LU and iterative refinement to achieve
0 10° FP64 accuracy

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size
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Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracyz1

FP1 6->64 dhgesv
FP32->64 dsgesv
-)(-FP64 dgesv

~FP16-TC->64 dhgesv|

L]
---------
s
""""
s®
.t
.
.
.
*
.

Tflop/s
o-nmw.hmmxloocoa‘,:;;;;;a;j;
!

- 12

1 3
10 3
- 9 3

[ o 46 100

2k 4k 6k 8k 10k 1

Problem generated with an arithmetic distribution of the singular values o; = 1 — (,’;_Tll)(l — ﬁ).

Ak *

nc nc ncC nc

18k 2%k
Matrix size

nc

26k

nc

30k

nc -

39k

Flops = 2n3/(3 time)
meaning twice higher is twice faster

solving Ax = b using FP64 LU

solving Ax = b using FP32 LU and
iterative refinement to achieve FP64
accuracy

solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy
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ADVANCING FUSION DISCOVERIES

ASGarD: Adaptive Sparse Grid Discretization
Two stream instability study

b

Scientists believe fusion is the future of energy but
maintaining plasma reactions is challenging and
disruptions can result in damage to the tokamak.
Researchers at ORNL are simulating instabilities in the
plasma to provide physicists a better understanding of
what happens
inside the reactor.

With NVIDIA Tensor Cores the
simulations run 3.5X faster
than previous methods so the team
can simulate significantly longer
physical times and help advance our
understanding of how to sustain the
plasma and generate energy

_—— SANVIDIA. i1t work with NVIDIA, ORNL & U
% OAK RIDGE

National .aboratorv

pez, Tyler McDaniel, Lin Mu,



Tensor Core Accelerated IRS
solving linear system AX = b Performance Behavior

PERFORMANCE FOR REAL-LIFE MATRICES FROM THE SUITESPARSE COLLECTION AND FROM DENSE MATRIX ARISING FROM RADAR DESIGN

FP6a  FP32 > FP64 FP16 > FP64 FP16-TC >FP64

name

Description

em192
appu
ns3Da
nd6k
nd12k
Poisson

Vlasov

radar design
NASA app benchmark
3D Navier Stokes
ND problem set
ND problem set
2D Poisson problem

2D Vlasov problem

nd12k
1,679,599 nnz

H*‘ﬁiﬂ:ﬂw" ‘ : rTRY
nd12k W DS o
14,220,946 nnz 1,853,104 nnz E
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Batched LA:
Many applications need LA on many small matrices

Data Analytics and associated with it Linear Algebra on small LA Sparse/Dense solvers & preconditioners
problems are needed in many applications: Sparse / Dense Matrix DAG-based factorization
* Machine learning, * Neuroscience, System m=) Batched LAPACK
« Data mining, *  Astrophysics, (5, 2, 2. 2] L 2 =)
* High-order FEM, * Quantum chemistry, A ®0 O m==) | Single calls to
e Numerical LA, *  Multi-physics problems, ANMS ’ Batched BLAS
* Graph analysis, * Signal processing, etc. =
A‘ll
Machine learning Applications using high-order FEM
Convolution Pooling Convolution Fully Output

«  Matrix-free basis evaluation needs efficient tensor contractions,

connected predictions

Output O, —— [M—m0 —meemeee ———__chirken _
| T =1 ll_l_l- m‘%&e&gg;ﬁg Cil,iZ,iS - ;Ak,ilBk,iz,B

: ___ODn,k N B ® o = ‘-__ F ::__ ________ -~ dog 0.01
\:\ o - L Convolution of Filters F, (feature detection) and input image D: . Within ECP CEED Project, designed MAGMA batched methods
— For every filter £, and every channel, the computation for . Lo . : :
1E B | every pixel value 0., is a tensor contraction: to split the computation in many small high-intensity GEMMs,
O..-SD.F.. grouped together (batched) for efficient execution:

Plenty of parallelism; small operations that must be batched

With data “reshape” the computation can be transformed into B h . AT B. f r ran f i
a batched GEMM (for efficiency; among other approaches) atc —{ C'3 i3, for range o 3 }




MAGMA Batched Computations

1 Non-batched computation

loop over the matrices one by one and compute using multithread (note that, since matrices are of small
sizes there is not enough work for all the cores). So we expect low performance as well as threads
contention might also affect the performance

for (1=0; 1<batchcount; 1++)
dgemm (...)




MAGMA Batched Computations

1. Batched computation

Distribute all the matrices over the available resources by assigning a matrix to each group of core/TB to
operate on it independently

* [For very small matrices, assign a matrix/core (CPU) or per 1B for GPU

« Formedium size a matrix go to a team of cores (CPU) ormany TB’s (GPU
* For large size switch to multithreads classical 1 matrix per round.

— . Batched dgemm(...) ~~Tasks manager ™~
ey

)




MAGMA Batched Computations

1. Batched computation

Distribute all the matrices over the available resources by assigning a matrix to each group of core/TB to
operate on it independently

« For very small matrices, assign a matrix/core (CPU) or per TB for GPU

* | For medium size a matrix go to a team of cores (CPU) or many TB’'s (GPU)

« Foriarge size switch to muitithreads ciassical 1 matrix per round.

Batched dgemm(...) ~~Tasks manager ™~

dispatcher




MAGMA Batched Computations

1. Batched computation

Distribute all the matrices over the available resources by assigning a matrix to each group of core/TB to

operate on it independently
For very small matrices, assign a matrix/core (CPU) or per TB for GPU

For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)

For large size switch to multithreads classical 1 matrix per round.

Batched dgemm(...)

m
dispatcher

Based/on the k
design that decide
number of

threads (GPU/CPU)

scheduler

P w w - “ w




MAGMA Batched Computations

Gflop/s

8000

7000

6000

5000

4000

3000

2000

1000

Nvidia V100 GPU

4X A X505 7N - 9692 3¢ 3¢ o0 3¢-5¢-:
" " large
sizes Switch to non-batched
20X
C=C+A*B
-0-Batch dgemm BLAS 3
=»¢-Standard dgemm BLAS 3
500 1000 1500 2000 2500 3000 3500

50~1000 matrices of size




How to implement fast batched DLA?

MAGMA 2.5.1 provides the most extended set of Batched BLAS and LAPACK functionalities to date

MAGMA BATCHED
\

BATCHED FACTORIZATION OF A SET OF SMALL MATRICES IN PARALLEL
Numerous applications require APPUCA'HONS/UBRAR'ES
factorization of many small matrices 2 7
* Deep learning * Sparse direct solvers
* Structural mechanics e« High-order FEM
« Astrophysics simulations

ROUTINES

LU, QR, and Cholesky 4 Ly

Solvers and matrix inversion v/ ' . .

E S SN NN
All BLAS 3 (fixed + variable) 4 AN sy
SYMV, GEMV (fixed + variable) ¢ DEVICES

~“MAGMA http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magma

//UNCLASSIFIED//Pre-Decisional: Not for Public Release



http://icl.cs.utk.edu/magma
https://bitbucket.org/icl/magma

CEED
ECP Co-Design Project

Center for Efficient Exascale Discretiations (CEED)

MAGMA - main technologies used/developed:

« Batched BLAS standardization
« Batched GEMMs
» Tensor contractions through fusing Batched DEMMs

batch<e=0. .‘n-elems>{ BID..x (BeA.B.T)B. }:

VS.
batch<e=0. .nelems> { C. = A.B.T }s
batch<e=0..nelems> { C. = B.Ce };
batch<e=0..nelems> { C. = D..*xC. };
batch<e=0. .nelems> { Ce. = Cc.B. };
batch<e=0..nelems> { C. = BTC, }s

 Auto-generation of kernels and tuning
 MAGMA Templates
« to easily port CPU code to GPUs

ECP

Compressible flow (MARBL)

Modular Nuclear
Reactors
(ExaSMR)

CEED target applications

Additive
Manufacturing
(ExaAM)

Wind Energy (ExaWind)

We are interested in working with other applications!

Magnetic
Fusion
(WDMApp)

Combustion (Nek5000)

High-order Meshes

PETSc

Areconditioners

Scalable matrix-free solvers

High-Order Software Ecosystem

Wi SR

Unstructured AMR

A=P"G"B" DBGP|

)

High-Order Operator Format General Interpolation

High-Order Visualization



Batched computing technology

* Fused kernels

Performance using Inline DGEMM Functions, Batch = 100k
9 [ Teslavioo
® MAGMA ¢ cuBLAS

Gflop/s

4200
3900
3600
3300
3000
2700
2400
2100
1800
1500
1200

900

600

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
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Redesign LAPACK and ScalLAPACK for new architectures:
the MAGMA and SLATE libraries

» Make the most up.to.date Use of BLAS for portablllty

algorithms and highly-tuned
numerical kernels available as
building blocks for production
codes on emerging architectures

Develop data abstractions and APIs
to ease interoperability and
integration, e.g., through familiar
Sca/LAPACK interfaces, wherever
possible

Implement self-contained novel
linear algebra algorithms that can
replace the currently used libraries
in production codes

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScaLAPACK (90°’s)
(Distributed Memory)
PLASMA (00’s)

New Algorithms
(many-core friendly)

MAGMA y mwns

Hybrid Algorithms
(heterogeneity friendly)

SLATE Fae

Tile Algorithms —— :
(distributed heterogeneous) -

Level 1 BLAS

Level 3 BLAS

PBLAS

BLAS on tiles +
DAG scheduling

BLAS tasking +
(CPU/GPU / Xeon Phi)

hybrid scheduling

Batched BLAS tasking +
hybrid scheduling

HE INIVERSITYof
icL>
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Level 1, 2 and 3 BLAS
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

4800 I I I I I I I I I I

4400 _ . = = - 2 - - Z

: nvibiA TESLA

4000 - - .
3600 - - B

3200 31X -

2800 & -
2
© 2400 - -

[y —
S 2000 - -

1600 - i _
1200 44 =@=dgemm BLAS Level 3 ||

800 - =@=dgemv BLAS Level 27
=l==daxpy BLAS Le 1

400 ¢

<
I
R
)(.
X
+
<

Matrix size (N), vector size (NxN)
Nvidia P100

The theoretical peak double precision is 4700 Gflop/s A
CUDA version 8.0 icLdor AAENNESSRE

e INIVERSITYof

N
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Programming model: BLAS + scheduling

MAGMA

hybrid scheduling

4 GPUs + CPU

BLAS tasking +

hybrid scheduling

Execution trace with hybrid task scheduling

i

Critical Path

GPU

MAGMA Dynamic

—

Left-looking hybrid Cholesky

From sequential
LAPACK )

to parallel hybrid
MAGMA

1 for(j=0, j<n; j+=nb) {

for( j=0, j<n; j+=nb) {
jb =min(nb, n-j);

&b, &n

zherk( “Upper”, “Conju

&b, &j, &one, | 4 magma_zgetmatrix_async( jb, jb, dA(jj), Id
b <n) AL o —
T magma_zgemm( MagmaConjTrans, Magm
Col tel
2eill a0, & dA(0,)), Idda, dA(0,j+jb), Idd
7 magma_event_sync( event );
zpotrf2(“Upper’, &b| 8 zpotrf( MagmaUpperStr, &jb, work, &b, info);
i info 1= 0) 9 if(info!=0)
info +=1; 10 tinfo+=j;
If 4jb) < n) { 1 magma_zsetmatrix_async(jb, jb, work, jb, dA

ztrsm( “Left’, “Uppd 13

2 jb=min(nb, n-j);
3 magma_zherk( MagmaUpper, MagmaConjTrd
ib, j, one, dA(0,j), Idda, one, d

12 If (j+jb) <n){
magma_event_sync( event ); n
14 magma_ztrsm( MagmalLeft, MagmaUpper,

jb, n-j-jb, one, dA(j,j), Idda,

Note:

MAGMA runtime environment

} [A. Haidar, A. YarKhan, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, “Flexible Linear Algebra
Development and Scheduling with Cholesky Factorization”, 17th |EEE International

I Conference on High Performance Computing and Communications, New York, August 2015. ]

* MAGMA and LAPACK look similar

« Difference is lines in red, specifying data transfers and dependencies

« Differences are further hidden in a dynamic scheduler making the top level
representation of MAGMA algorithms almost identical to LAPACK

icLL>or
INNOVATIVE

COMPUTING LABORATORY
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Programming model: BLAS + scheduling

* It follows asynchronous/dynamic execution
phases of the panel and the update

* It hide the memory bound For s = 0, nb, .. N
behavior of the panel panel factorize
factorization
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Programming model: BLAS + scheduling

* It follows asynchronous/dynamic execution
phases of the panel and the update

* It hide the memory bound For s = 0, nb, .. N
i | fact
behavior of the panel panel factorize
remaining

factorization
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Programming model: BLAS + scheduling

* It follows asynchronous/dynamic execution
phases of the panel and the update

* It hide the memory bound For s = 0, nb, .. N
i | factori
behavior of the panel panel factorize
remaining

factorization
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Programming model: BLAS + scheduling

* It follows asynchronous/dynamic execution
phases of the panel and the update

* It hide the memory bound For s = 0, nb, .. N
i | factori
behavior of the panel panel factorize
remaining

factorization
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Polymorphic approach

Hardware is generalized
— Defined as virtual Master and Devices S S S
— Device can be group of cores, GPU, KNL, etc.

— Similar for Master

The same algorithm can run on this generalized hardware

— User specified Master and Devices

— Support different hardware configurations, including combinations, through one code
Dynamic-MAGMA LU

1 800 T T T T T T T T T T T T T T T T T T T T
1600 |- = T -
~ ©
1400 - _
1200 |- .
g_ 1000 |- V. -
o >
(5 800 e o o0 0o0—0—© ]
600 i & _
400 ~ /U vt © —©—Native: 1 KNL preproduction (64cores) I
/ 1 —©~—Native: 1 KNC 7120 (61c)
200 - " —&—Hybrid: 2 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670) ||
¥ & —O—Hybrid: 1 KNC 7120 (61c) (+16 CPU SandyBridge E5-2670)
e d | +Natlve 36 CPUs E5 2697 (Broadwell)
2k 4k 6k 8k 10k 1 2k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k 38k 40k
Matrix size

Performance of LU across 5 hardware configurations



SLATE
Software for Linear Algebra Targeting Exascale

Jakub Kurzak, Mark Gates, Asim YarKhan, Ali Charara, Ichitaro Yamazaki, Jamie Finney, Jack Dongarra

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s

Office of Science and National Nuclear Security Administration, responsible
for delivering a capable exascale ecosystem,

including software, applications, and hardware technology,

to support the nation’s exascale computing imperative.
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SLATE Stack

molecular computational quantum quantum sparse
dynamics chemistry mechanics chemistry solvers

XA NV CHETEX S IRGICRACK S IR ANES ST IR SE
e IR ETEX™ _iEE0e

PARALLEL DENSE LINEAR ALGEBRA ROUTINES
DISTRIBUTED MEMORY
MULTICORE
ACCELERATORS

LAPACK++ batch' BLAS++

e cos | S RN W

' ECP . standards . vendor . SLATE

\ HE JNIVERSITYof
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SLATE Working Notes

http://www.icl.utk.edu/publications/series/swans

¢ Designing SLATE: Software for Linear Algebra Targeting Exascale

http://www.icl.utk.edu/publications/swan-003

¢ C++ API for BLAS and LAPACK

http://www.icl.utk.edu/publications/swan-002

https://bitbucket.org/icl/blaspp

https://bitbucket.org/icl/lapackpp

¢ Roadmap for the Development of a Linear Algebra Library for Exascale Computing:

SLATE: Software for Linear Algebra Targeting Exascale

http://www.icl.utk.edu/publications/swan-001 ICL.: ‘ e JNIVERSITYof

INNIOVATIVE TENNPSSEE

COMPUTING LABORATORY and Computer Science



http://www.icl.utk.edu/publications/series/swans
http://www.icl.utk.edu/publications/swan-003
http://www.icl.utk.edu/publications/swan-002
https://bitbucket.org/icl/blaspp
https://bitbucket.org/icl/lapackpp
http://www.icl.utk.edu/publications/swan-001

SLATE Matrix

std::map<std::tuple<int64 t, int64_t, int>, Tile<FloatType>*>

¢

¢

¢

¢

B/ @8
BE ||| 888
BEE | (EEE
BEEER || S

[ [ ).

I

I

H

collection of tiles
individually allocated
only allocate what is needed

accommodates: symmetric, triangular, band, ...

not allocated

B
| .
o .
HE | |

e |

I

H

*tiles_;

While in the PLASMA library the matrix is also stored
in tiles, the tiles are laid out contiguously in memory.

In contrast, in SLATE, the tiles are individually
allocated, with no correlation of their locations in the
matrix to their addresses in memory.

ICL \ ur e INIVERSITYof
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SLATE Distributed Matrix

)
-
-
-

I

-
ﬁ[.J:
]
u
u

I

) —
——————/
s N
\ )
) —
——/

|

|

,—
S
—_—
—_—

std::map<std::tuple<int64_t, int64_t, int>, Tile<FloatType>*> *tiles_;

¢ distributed matrix The same structure, used for single node
representation, naturally supports distributed
¢ global indexing of tiles memory representation.

¢ only allocate the local part

e INIVERSITYof

¢ any distribution is possible (2D block cyclic by default |CL<[>UI'
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GEMM Scheduling

Mk

IHEEEL - IDEEEE
©

2
11
e
L
1

¢ nested parallelism

¢ top level: #pragma omp task depend

bottom level:

¢ #Hpragma omp task

ﬁ.*
"
¢ batch GEMM
B B8
T A A Aaa
a
5
B
e
5= icLour PN

N
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Accelerating memory-bound codes:
the case of redesigning 3D FFTs for GPU-only execution

» FFTs needed in molecular dynamics, spectrum estimation, fast convolution and correlation, signal modulation, and wireless multimedia applications
(although highly needed, FFT has not been actively developed and issues with licenses, etc.)

Main objectives
Design and implement a fast and robust 2-D and 3-D FFT library that targets large-scale heterogeneous systems with multi-core
processors and hardware accelerators. Furthermore, FFT-ECP must be co-designed with other ECP application developers

Built from established but ad hoc software tools that have traditionally been part of application code:
» Collect existing FFT capabilities in ECP applications (LAMMPS/fftMPI and HACC/SWFFT)

» Assess gaps and make available as a sustainable FFT math library for ECP applications.
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Accelerating memory-bound codes:
the case of redesigning 3D FFTs for GPU-only execution

» FFTs needed in molecular dynamics, spectrum estimation, fast convolution and correlation, signal modulation, and wireless multimedia applications
(although highly needed, FFT has not been actively developed and issues with licenses, etc.)

Main objectives
Design and implement a fast and robust 2-D and 3-D FFT library that targets large-scale heterogeneous systems with multi-core
processors and hardware accelerators. Furthermore, FFT-ECP must be co-designed with other ECP application developers

Built from established but ad hoc software tools that have traditionally been part of application code:
» Collect existing FFT capabilities in ECP applications (LAMMPS/fftMPI and HACC/SWFFT)

» Assess gaps and make available as a sustainable FFT math library for ECP applications.

Memory-bound LA
31 32 33 34 35 36 1
33| 34| |35/ |36 33| 34| |[35| /36
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FFT-ECP

» Need to scale on systems like Summit

» Use CUDA-aware MPI (data stays on GPU memory all the time)
 To achieve full bandwidth from a node

« 2x2x12.5GB/s=50GB/s?

4 w
=3 Ag_:& DRAM DRAM §$‘g~:&
|2 [*5™|5 | [*]] 2608 || 2808 | [™]|22[*5™|6 | [
D (=]
B B Y
50 GBIs o 3 o) ©  50GBIs
\4 3 0 0 23 Y
™ ™
» = 64 ‘_V »n
(7] a N E (2]
Pra) GB/s | & o
UNDER THE HOOD e e e I e Rl e | S
I ~ T ~
. : ? | s Ty ™ R ©
\ / (Z] \
Summ]t haS fat nOdeS. — % ’/,(%\7 “. w [r—
50 GB/s g EANE I g 50 GB/s
A o : T = 4
n ‘\ D
Many connections - \ ol 2
20 AO;DLL \ EOAO‘DLI.
Many devices e [* ™6~ ‘E NI
[=>] (=]
Many stacks : v
3 6.0 GB/s Read
. S xea
2 2.2 GB/s Write
TF 42 TF (6X7 TF) -¢—» HBM/DRAM Bus (aggregate B/W)
HBM 96 GB (6x16 GB) -4—p NVLINK
DRAM 512 GB (2x16x16 GB) <4+—p» X-Bus (SMP)
NET 25 GB/s (2x12.5 GB/s) <t— PCle Gen4
MMsg/s 83

-+—» EDRIB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, IB) are bi-directional. ICL~€/ ’?‘Eﬁ%%gggﬁ
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FFT-ECP - Communications is a main bottleneck

GPUDirect technologies in CUDA-aware MPI for fast communications:

P2P between
GPUs on a
node

Remote Direct
Memory Access
(RDMA) for
GPUs across
nodes

Distribution Statement D: Distribution authorized to the Department of Defense and U.S. DoD contractors only; administrative or operational use; 25 April 2019. Other requests for this document shall be referred to the High PI?
CO

No GPUDirect P2P

GPUDirect P2P

=
=

0
:

_
GPU
Memory

No GPUDirect RDMA

=
gt

e
InfiniBand GPU
Memory

GPUDirect RDMA
[ T —
=

—

InfiniBand
Mcmory

L

Office, 3909 Halls Ferry Road, Vicksburg, MS 39180.
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Latency (us)

FFT-ECP
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350 -
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50

Point-to-point (GPU-to-GPU) communications achieve good asymptotic bandwidth
Also, can benefit from duplexing, but latencies are high

Collectives still need improvements

GPUs communicating within a Summit node

ILatency:+ | | | : |
B Bandwidth ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,, 77777777777777777
~ Bandwidth peak -------- ‘ ‘ ‘ ‘ ‘

10° 10" 102 10° 10% 10° 108 107
Packet size (Bytes)

Bandwidth (GB/s)

Latency (us)

10000 —

1000 |-

100

10

GPUs communicating between Summit nodes

| Latency — -
Bandwidth
Bandwidth peak «=------ | | T

Bandwidth (GB/s)
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Performance bottlenecks

- Computations have been accelerated with GPUs (40x vs. CPU)

3D FFT on 4 nodes of summit for N = 1024 (24 V100 GPUs vs. 160 Power9 cores)

Main 3D FFT kernels Time (ms) Overall
GPU CPU GPU CPU

Unpack 123
Batched 1D FFTs 63 216 ms
Pack 30
cLCoor R
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Performance bottlenecks

- Computations have been accelerated with GPUs (40x vs. CPU)

3D FFT on 4 nodes of summit for N = 1024 (24 V100 GPUs vs. 160 Power9 cores)

Main 3D FFT kernels Time (ms) Overall
GPU CPU GPU CPU

Unpack 2.1 123
Batched 1D FFTs 1.8 63 3.7 ms 216 ms
Pack 1.8 30
icLdor  PENNESSEE

N
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Performance bottlenecks

- Computations have been accelerated with GPUs (40x vs. CPU)
* MPI GPU communication though is slower even with GPU direct

3D FFT on 4 nodes of summit for N = 1024 (24 V100 GPUs vs. 160 Power9 cores)

Main 3D FFT kernels Time (ms) Overall
GPU CPU GPU CPU

Unpack 2.1 123

Batched 1D FFTs 1.8 63  28>7ms 368 ms
Pack 1.8 30 (140Gflop/s) (108 Glop/s)
MPI A2A 280 152
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Performance bottlenecks

- Computations have been accelerated with GPUs (40x vs. CPU)
* MPI GPU communication though is slower even with GPU direct

3D FFT on 4 nodes of summit for N = 1024 (24 V100 GPUs vs. 160 Power9 cores)

Main 3D FFT kernels Time (ms) Overall
GPU CPU GPU CPU

Unpack 2.1 123

Batched 1D FFTs 1.8 63  28>7ms 368 ms
Pack — 30 (140 Gflop/s) (108 Glop/s)
MPI A2A 280 152

» MPI GPU Direct A2A can/must be significantly improved
— P2P are better; using them GPU version becomes 192 Gflop/s
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Strong scalability of 3D FFT on Summit (N = 1024)

1400
<= X 6 V100
1200
4= x 40 Power9
1000
<
8- 800 Memory bound scalability peak:
= « 78 Gflop/s per node
O 600 > Assuming max bandwidth
2x2x12.5 GB/s = 50 GB/s
400 * Achieved performance is
1223/32 = 38 Gflop/s per node
200 > or ~25 GB/s (this is maximum
if there is no duplexing)
0 I I I I I 1

# nodes



Strong scalability of 3D FFT on Summit (N = 1024)

8

=X 6 V100
4 <k x 40 Power9

Memory bound scalability peak:
« 78 Gflop/s per node
» Assuming max bandwidth
2x2x12.5 GB/s = 50 GB/s
0.5 S  Achieved performance is
1223/32 = 38 Gflop/s per node
> or ~25 GB/s (this is maximum
if there is no duplexing)

Time (sec)
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0.125 | | | | e
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Conclusions

Presented a number of software technologies for high-performance linear
algebra targeting exascale computing

Mixed-precision algorithms can accelerate significantly numerical solvers
and applications

Batched computations have many applications and can be accelerated
significantly

MAGMA and SLATE — redesigning dense linear algebra to still get close to
machine peaks on new architectures

Memory-bound codes, and 3D FFTs in particular, were redesigned to use
GPU-Direct technologies for GPU-only execution

— Computation accelerated 40x, leaving communication as main bottleneck
(now 98% spent in MPl communications in targeted benchmarks)
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