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The CoMet comparative genomics application
A new biosciences application, CoMet = Combinatorial Metrics code

Used to identify genomic features within a population

Not a “traditional” modeling and simulation code (e.g., continuum PDE solver, PIC, 
Monte Carlo, etc.)

Also is not a deep learning app per se, though is part of an AI workflow

Best described as a data analytics application used in comparative genomics 
studies



33

CoMet Solves a “Needle in a Haystack” Problem
• Background: Many traits in individuals, such as susceptibility to 

a disease like Alzheimers or opioid addiction, are caused by the 
complex interaction of many features in an individual’s genome

• However, it is unknown a priori which of the millions of genomic 
features are interacting to cause these traits

• This results is a huge combinatorial explosion of potential 
interactions to search through

• Mathematically, this can be represented as an all-to-all vector comparison problem: we seek all 
pairs (or triples) of vectors that have some similarity property (representing cooccurrence)

• Formally, we have n vectors, of length m, interacting k vectors at a time (k = 2, 3, …) 
representing pairwise (k=2), 3-way, or higher order interactions

• The relevant methods have computational complexity O(nkm)

• Lower complexity methods exist, e.g., based on locality sensitive hashing, but they do not find 
all of the needed relationships

• Because this is an all-to-all computation, any solution method will necessarily require heavy 
communication and memory traffic
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How to Solve?
• This is an O(nkm) computation on O(nm) inputs (vectors) and O(nk) results (the 

result is a tensor)
• There is much more computation than data – suggesting that high computational 

intensity might be possible
• In fact, for k=2, vector similarity methods are structurally identical to DGEMM 

dense matrix-matrix products – in fact, cosine vector similarity (inner products) is
a DGEMM

• Likewise, higher order methods (k > 2) are structurally identical to tensor 
contractions

• Because of this relationship, we can apply dense linear algebra methods and 
software to solve these problems
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Specific Methods: PS and CCC

method Proportional Similarity (PS) method Custom Correlation Coefficient (CCC)
inputs real-valued inputs 2-bit allele values

2-way

3-way

Scalar minimum of values Counting number of occurrences 
of bit combinations
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How to Map to Accelerated Processors (2-way case)

• PS method
– MAGMA SGEMM, DGEMM kernels: replace c += a*b with c += min(a,b)
– Use CUDA intrinsics fmin, fminf for speed

• CCC, method 1 (bitwise calculation method)
– MAGMA ZGEMM: replace c += a*b with 64-bit AND, OR, NOT operations 

followed by binary popcount instructions
– Use CUDA intrinsic __popcll for speed 

• CCC, method 2 (Tensor Core calculation method)
– Modify to use half precision GEMM (see following slides)
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2-way CCC Computation Example
A counting problem: count number of occurrences of certain bit 
combinations:

v1 v2

0 0
2 2

0
1

1
1

1 1

0 1

1 1

0 1

00 10

01 11

Two vectors of 
length 1, each 
entry has 2 bits

Enumeration of all 
pairings of bit 

values (“paths”)

Tally of counts 
of number of 

occurrences of 
each pairing 

type
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CCC Tensor Core Method on a GPU
• Each vector is replaced by two vectors, 

each containing the number of 0s and 1s of 
each element of the original vector, forming 
a new matrix of vectors V

• Then taking the dense matrix-matrix 
product VT V generates all 2X2 tables for all 
vector pairs

• Bit-for-bit identical result to previous 
method

• FP16 is used to hold the 2-bit inputs; the 
result is accumulated as FP32

• Uses CUDA function cublasGemmEx
• ~4X faster than original bitwise method

0
1

1
1

0
0 2 0

0 2

1 1

Original 
vector

# 0s

FP16 
vectors

# 1s
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Mapping to Many-GPU Systems
• This method must be mapped to many thousands of GPUs
• The algorithm is very similar to a distributed DGEMM or a tensor contraction
• Thus use a very similar decomposition to Parallel BLAS (PBLAS) or 

ScaLAPACK: subdivide the rows and columns of the matrices and tensors to 
achieve multidimensional parallelism by decomposition into blocks:

2-way inputs and results 3-way results
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Implementation: overlap of transfers with computation
It is extremely important to overlap data motion with computation to get high efficiency
The image below shows the data motion pattern for the 2-way method:

1. A one-time data read from the GPFS file system
2. Stepwise all-to-all communication with other ranks, overlapped with computation
3. Send of data to GPU,
4. Send of result back to CPU, overlapped with computation
5. CPU filters results, writes significant values to node-local NVMe devices
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Results: CoMet Weak Scaling on Summit
• All methods are scaled to 

99% (2-way methods) or 
95% (3-way methods) of 
Summit

• Compute time is shown, 
without I/O (lower is better)

• All methods show near-
perfect weak scaling

• Made possible by 
aggressive communication 
overlap and low-
congestion Mellanox 
Infiniband fat tree network 
with adaptive routing
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Summit Absolute Performance at Max Node Counts
• Performance for each method at scale 

is compared to the highest achievable 
performance for that method’s GPU 
kernel

• CCC/bitwise method @ scale runs at 
98% of the peak performance that is  
achievable for its GPU kernel

• CCC Tensor Core method 82%
• PS: 189.54 single precision PetaOps
• CCC/sp/Tensor Cores: 2.36 ExaOps –

(equivalent to 86.4 TeraOps per GPU)

• Tensor Core method comparison rate is 
4.13X higher than bitwise method
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Summit Performance Compared to Titan
• The comparison rate (measure of 

science output) for Summit is 36.2X
higher per GPU than the Titan 
(bitwise) method (due to Summit’s 
faster GPUs and Tensor Cores)

• This value normalized to full system 
is equivalent to Summit giving 
53.6X higher science output rate 
than Titan

• Note this exceeds the CORAL-2 
Exascale performance target of 
50X higher app performance than 
Titan

• We are achieving exascale-class 
science on a pre-exascale system, 
thanks to Tensor Cores

System # GPUs 
used

% of system 
used

comparisons
/sec

Titan 17,955 96% 5.360e15
Summit 27,360 99% 295.633e15

2.36 
ExaOps
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Issues encountered using Tensor Cores
• Matrices are tall and skinny – axis order had to be reversed to give shorter 

leading matrix dimension for better TC performance (about 2X faster) (thanks to 
Sean Treichler of NVIDIA for suggestion)

• HGEMM performance as a function of matrix size is irregular, hard to precisely 
predict – performed extensive timing tests with Baidu DeepBench benchmark to 
try to understand – advisable to pad up to a multiple of a small power of 2 (e.g., 
8, 16, 32) – however too much padding will be wasteful

• There are many tuning options for HGEMM (~16 choices for the algorithm 
setting) – determined CUBLAS_GEMM_ALGO4_TENSOR_OP was the best – would 
prefer if default setting would give this performance (anticipate improvements 
with CUDA 10 cuBLASLt library)

• TC/GEMM has surprising data-dependent performance: ~125 TF theoretical 
peak, 113 TF achievable on zero-filled matrices, 105 TF peak on CCC matrices 
(random 2-bit entries), ~95 TF peak on matrices with fully random FP16 entries
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Summit Power Consumption
• 2-way CCC/sp/tc @ 

4560 nodes

• Summit power usage 
for 1 out of 4 phases 
of the run, duration ~ 
50 sec.

• Avg power: 11.45 MW 
(20% higher than 
HPL)

• 206 GigaOps / Watt
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Comparison to State of the Art Implementations
Comparison with other efforts 
reported in the literature to adapt 
these methods to GPUs and to 
parallel systems

Fastest known 2-way method 
(cluster size k = 2) was run on 512 
nodes of Edison.  CoMet exceeds 
this rate by 21,285X

Fastest known 3-way method was 
run on 4 GTX/Titan GPUs.  CoMet 
exceeds this rate by 306,910X

CoMet runs 4 - 5 orders of 
magnitude faster than best 
current state of the art

Made possible by first-time use of 
a many-GPU system to solve 
problems of this type
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Performance on a Real-World Problem
• Data from publicly available human genome 

dataset, 81M vectors of length 600K

• 2-way CCC/sp/tc method is run @ 2/3 of Summit 
(3,000 nodes)

• Inputs are read from preliminary AlpineTDS
filesystem prior to Summit acceptance

• Output are written to on-node NVMe burst buffers
• The core computation consumes 89% of runtime; I/O and other overheads only 11%

• Output time is small because only writing 1 out of every 3 million results (“needle in haystack”)

• Highlights importance of optimizing entire workflow in order to take advantage of speedup from 
reduced precision

• Core computation runs at 1.50 ExaOps on 2/3 of Summit, consistent with 2.36 ExaOps rate at 
99% of Summit

• Total job runtime is 3.3 hours on Summit -- if run at the rate of best comparable state of the 
art, would require 15 years wallclock runtime to complete
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Final Thoughts, Questions
• Reduced precision offers a great performance boost – are there many more 

applications can use them? (we are investigating …)
• Lower precisions are coming -- NVIDIA Turing architecture supports INT8, INT4 

and INT1 in the Tensor Cores – can our apps use these?
• Porting effort: does the performance benefit of using mixed precision outweigh 

the extra development and maintenance effort?  CoMet Tensor Core method 
required 2 weeks to prototype, 1 additional month code tuning, result was 4X 
speedup – in this case well worth it.

• “Compute jungle” of increasingly heterogeneous processors as CMOS scaling 
slows – this is challenging to our developers: code performance portability and 
maintainability

• As developers we may need to repeatedly rethink and adapt our algorithms as 
we get new kinds of accelerators and heterogeneity in the future (cf. Extreme 
Heterogeneity workshop. PMES workshops)
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Conclusions
• We have found a way to map a data analytics application to GPUs and exploit 

fast low-precision hardware on Summit’s Volta GPUs
• Using the Tensor Cores for mixed precision gave us about 4X performance 

improvement over the previous implementation on Summit
• This enables a huge advance over state of the art and will allow us to solve 

previously unsolvable problems
• This work highlights the growing need to make use of the new kinds of hardware 

we’re increasingly seeing.  “Whatever it takes”
• Also highlights the need to optimize data motion (and the entire workflow) to 

make best use of processor advances
• At the OLCF we are hoping to find more opportunities to exploit unconventional 

hardware features on current and future systems
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