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“If you want to make a simulation 
of nature, you'd better make it 
quantum mechanical, and by 
golly it’s a wonderful problem, 
because it doesn't look so easy.”
Richard Feynman, Simulating Physics with Computers

(1982)
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What is Quantum Computing?

• Quantum mechanical computation
– In quantum mechanics, the wave function 

describes all knowledge about the system
• Quantum computing manipulates the wave 

function to perform calculations
– Quantum dynamical control of the 

Hamiltonian corresponds to computation

Stodolna et al. PRL 110, 213001 (2013)

𝑖ℏ
𝜕Ψ 𝑡
𝜕𝑡

= 𝐻 𝑡 Ψ(𝑡)



7

Basic Requirements of a Quantum Computer

• A scalable system of well-characterized qubits
• The ability to initialize qubits in well-defined 

fiducial states
• A universal set of quantum gates
• Decoherence times much longer than gate 

operation times
• A qubit-specific measurement capability
• The ability to swap qubit locations
• The ability to move qubits

a = cosθ/2  

b = eiϕ sinθ/2

θ

ϕ

Qubit
D. DiVincenzo, “The Physical Implementation of Quantum Computation,” (2000)

ψ = a + b|0⟩

|1⟩

|1⟩|0⟩
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Principles of Operation for Quantum Computers

• Prepare a register of qubits in a well-
defined initial state

• Apply a sequence of unitary operators, 
gates, to the register elements

• Measure the register elements and 
decode the resulting information

• Measurement feedback may guide the 
next gate choice, required by algorithm

• Operations may be realized using several 
different computational models
– Circuit/Gate vs Adiabatic

Gate model operations represent discrete sequences 
of gates acting on a register.
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Adiabatic model operations represent continuous-
time dynamics applied to a register.
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A Race for Quantum Technology

20 22

updated CREDITS: (GRAPHIC) C. BICKEL/SCIENCE; (DATA) GABRIEL POPKIN (2016)
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Quantum Processing Units

Superconducting chip 
from D-Wave Systems

Superconducting chip from IBM
Superconducting chip from Rigetti Ion trap chip from ionQ

Superconducting chip from Google Superconducting chip from USTC
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Materials

• Transmon qubits 
encode information 
in charge states

• Cooper pair electrons 
coupled by circuit 
QED resonators

Devices

• Integrated circuit with 
20-transmon register

• Coherence, ~100 µs

• Gate pulses ~100 ns

• Gate errors ~1%, 
measure errors ~5%

Computing

• Cryogenically cooled 
to ~13mK, isolated

• Signal power ~1 nW

Example: IBM Q System

Applications

• Cloud-based access
import xacc

# Initialize the framework 
xacc.Initialize() 

# Get the desired QPU and 
# allocate some qubits 
qpu = 
xacc.getAccelerator('ibm’)

qubits = 
qpu.createBuffer('q',3) 

# Define the XACC Kernel 
@xacc.qpu(accelerator=qpu) 
def teleport(buffer): 
X(0) 
H(1) 
CNOT(1,2)
CNOT(0,1) 
CNOT(1,2) 
CNOT(2,0) 
Measure(2, 0) 

# Use the kernel
teleport(qubits) 

# Display the results 
print(qubits) 

# Finalize the framework 
xacc.Finalize()
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Metrics
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Measuring Quantum Computer Capabilities

D-Wave

Scale of qubits
Initialization fidelity
Gate set fidelity
Duty cycle
Measurement fidelity
Swap fidelity
Transport fidelity



13

Fault-tolerant Operation of a Quantum Computer

• The redundant encoding of information 
can mitigate errors
– Familiar strategy for classical information
– Modified for quantum information due to 

no-cloning theorem

• Fault-tolerant device operation can be 
established provided:
– Code is sufficiently large
– Error rates are sufficiently small

• Current estimates
– Code size ~100-1000 physical qubits per 

logical qubit
– Error rates 10-100x improvements in gates, 

100x improvement in coherence time
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Scientific Applications of Quantum Computing

• Algorithms in the quantum computing model have 
been found to take fewer steps to solve problems

• Several physical domains motivate quantum 
computing as a paradigm for scientific computing

• Quantum Simulation
• Partition Functions
• Discrete Optimization
• Machine Learning

• Artificial Intelligence
• Data Analytics
• Planning and Routing
• Verification and Validation

• Factoring
• Unstructured Search
• Eigensystems
• Linear Systems

• High-energy Physics
• Materials Science
• Chemistry
• Biological Systems
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Computational Chemistry with Quantum Computing

• Quantum mechanics offers a natural 
representation of chemistry problems

• Electronic structure calculations offer 
a well-studied series of test cases

• We have created an automated 
benchmarks suite for metal hydrides

• Tradeoffs in algorithm design and 
compiler options dominate behavior

A. McCaskey et al. “Quantum Chemistry as a Benchmark for Near-Term Quantum Computers” (2019)
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Computational Chemistry with Quantum Computers

• Unitary evolution of a quantum register under a 
synthetic Hamiltonian can be decomposed into a 
sequence of gates using Trotterization.

• Phase estimation can probe the eigenenergy, but 
this is sensitive to noise and approximation errors.

• Protection against noise is possible but at the 
expense of significant overhead from fault-tolerant 
operations using quantum error correction codes.

Ψ(𝑡) = 𝑈 𝑡, 𝑡0 Ψ 𝑡0 ≅2
3

𝑈3 𝑡3, 𝑡345 |Ψ 𝑡3 ⟩

𝑄𝐹𝑇9 𝑈: 𝑡, 𝑡0 𝐻⊗< Ψ(𝑡0) 0 ⊗< →>
3

𝑐3 𝜙3 |𝐸3⟩

M. Reiher et al. “Elucidating reaction mechanisms on 
quantum computers“ (2017)
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Computational Chemistry with Quantum Computers

• A more economical algorithm uses the variational principle, which searches for the 
quantum state that minimizes the energy defined by the Hamiltonian.

Ψ(𝑡; 𝜃D) =2
3

𝑈3 𝑡3, 𝑡345; 𝜃D |Ψ 𝑡3; 𝜃D ⟩min
H
⟨Ψ 𝑡; 𝜃 J𝐻 Ψ 𝑡; 𝜃 ⟩

State Preparation J𝐻 Estimate
Energy Done?

Update 
Parameter

No

Yes
𝐸K
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Computational Chemistry with Quantum Computers

• A more economical algorithm uses the variational principle, which searches for the 
quantum state that minimizes the energy defined by the Hamiltonian.

Experimental results (black circles), exact energy surfaces (dotted lines) and density plots of 
outcomes from numerical simulations, Credit Kandala et al., Nature 549, 242 (2017).
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FIG. 3. Application to quantum chemistry: Potential energy surfaces Experimental results (black circles), exact
energy surfaces (dotted lines) and density plots of outcomes from numerical simulations, for a number of interatomic distances
for a, H2 b, LiH, and c, BeH2. The experimental and numerical results presented here use depth d = 1 circuits. The error bars
on the experimental data are smaller than the size of the markers. The density plots are obtained from 100 numerical outcomes
at each interatomic distance. The top insets of each figure highlight the qubits used for the experiment, and the cross-resonance
gates that constitute UENT. The bottom insets of each figure are representations of the molecular geometry, not drawn to scale.
For all the three molecules, the deviation of the experimental results from the exact curves, is well explained by the stochastic
simulations.

total of 30 Euler control angles associated with 6 qubits.
The inset of Fig. 2 shows the simultaneous perturbation
of 30 Euler angles, as the energy estimates are updated.

To obtain the potential energy surfaces for H2, LiH,
and BeH2, we search for the ground state energy of their
molecular Hamiltonians, using 2, 4, and 6 qubits respec-
tively, for depth d = 1, for a range of di↵erent inter-
atomic distances. The experimental results are compared
with the ground state energies obtained from exact diag-
onalization and outcomes from numerical simulations in
Fig. 3. The colored density plots in each panel are ob-
tained from 100 numerical optimizations for each inter-
atomic distance, using CR entangling gates on the same
topology as the experiments. The simulations performed
account for decoherence e↵ects, simulated by adding am-
plitude damping and dephasing channels after each layer
of quantum gates. The impact of finite sampling on the
optimization algorithm is taken into account by numeri-
cally sampling the single Pauli terms in the Hamiltonian,
and adding their averages. In addition to the e↵ects of
decoherence and noisy energy estimates, the deviations
are also due to low circuit depth for trial state prepara-
tion, which, for example, explains the kink in the range

l = 2.5� 3
�
A, in Fig. 3b. In the absence of noise, depths

of d = 1, 8, 28 are required to achieve chemical accuracy
(approx. 0.0016 Hartree), on the current experimental
connectivities for H2, LiH and BeH2, respectively. We
emphasize that our hardware-e�cient approach is unaf-
fected by coherent gate errors, as long as entanglement is
provided through the trial state preparation circuit. This
shifts the focus to the reduction of incoherent errors, fa-
voring our fixed-frequency, all-microwave control, qubit
architecture. Furthermore, the e↵ect of incoherent errors
can be mitigated as recently proposed [26–28], without

requiring additional quantum resources.
We now explore a problem where the advantage of us-

ing higher circuit depths is apparent despite energy mea-
surement fluctuations and decoherence e↵ects. We con-
sider a four qubit Heisenberg model on a square lattice,
in the presence of an external magnetic field. The model
is described by the Hamiltonian H = J

P
hiji(XiXj +

YiYj +ZiZj) +B
P

i Zi, where hiji indicates the nearest
neighbor pairs, J is the strength of the spin-spin inter-
action, and B the magnetic field along the Z-direction.
We utilize our technique to solve for the ground state
energy of the system for a range of J/B values. When
J = 0, the ground state is completely separable, and the
best estimates are obtained for depth d =0. As J is in-
creased, the ground state is increasingly entangled, and
the best estimates are instead obtained at d = 2, despite
the increased decoherence caused by using two entanglers
for trial state preparation. This is shown in Fig. 4a for
J/B = 1. The experimental results are compared with
the exact ground state energies for a range of J/B val-
ues in Fig. 4b, and our deviations are captured by the
density plots of the numerical outcomes that account for
noisy energy estimations and decoherence. Furthermore,
in Fig. 4c, we show that our approach can also be used
to evaluate observables such as the magnetization of the
system Mz.

The experiments presented here have shown that a
hardware-e�cient optimizer implemented on a six-qubit
superconducting quantum processor is capable of ad-
dressing molecular problems beyond period 1 elements,
up to BeH2. Crucial aspects to improve will be in-
creased coherence, enabling longer circuit depth for state
preparation, increased on-chip qubit connectivity, reduc-
ing critical depth for achieving chemical accuracy, and

Ψ(𝑡; 𝜃D) =2
3

𝑈3 𝑡3, 𝑡345; 𝜃D |Ψ 𝑡3; 𝜃D ⟩min
H
⟨Ψ 𝑡; 𝜃 J𝐻 Ψ 𝑡; 𝜃 ⟩
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Nuclear Physics with Quantum Computing

• Nuclear binding energy determines 
the stability of nuclear isotopes

• Predicting heavy isotope stability is 
a quantum many-body problem

• We calculation the binding energy 
of deuteron, the simplest example 
with a proton-neutron bound state.

E. Dumitrescu et al. “Cloud Quantum Computing of an Atomic Nucleus” (2018)
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The Binding Energy of Deuteron

Top Panel

• This is the energy estimate of 
the theta-parameterized 
state

• Data were taken on two 
processors, IBM and Rigetti

Bottom Panel
• The weighted sum of these 

terms gives the energy 
estimate

• These results yield a binding 
energy of 2.18 MeV based 
on fits of Luscher’s formula
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High-energy Physics with Quantum Computing

• Quantum chromodynamics is a 
quantum field theory to describe 
the strong force

• Calculations of low-energy 
processes are dominated by 
symmetry breaking dynamics

• We use a simple lattice QCD model  
to simulate the dynamics of the 
quantum fields.

N. Klco et al. “Quantum-classical computation of Schwinger model dynamics using quantum computers” (2018)
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Quantum Computing Use Cases for Scientific Computing

Physical Sciences
• Chemistry, Materials, High-

Energy Physics, Nuclear 
Physics, Fusion

Applied Sciences
• Engineering, Verification 

and Validation, Energy 
Sciences

Data Sciences
• Artificial Intelligence, 

Machine Learning, 
Inference and Mining

0-3 Years 3-5 Years +10 Years
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quantum@ornl.gov 

Quantum Computing User Forum
Brings together users to discuss common practices in the development of 
applications and software for quantum computing systems.

SPRING 2020
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Thank You!

Travis Humble, humblets@ornl.gov


