An asynchronous GPU algorithm for extreme scale fourier pseudo-spectral simulation of turbulence
Kiran Ravikumar, David Appelhans, P. K. Yeung, Oscar Hernandez
Georgia Institute of Technology
kravikumar7@gatech.edu

Abstract

An asynchronous GPU-driven Fourier pseudo-spectral algorithm has been developed on Summit to enable turbulence simulations at a problem size exceeding the prevailing state of the art. The primary question is how to re-design communication-intensive applications for maximum benefit from emerging pre-Exascale machine architecture, which is characterized by a shift from massive CPU-based parallelism to heterogeneous platforms with fat nodes and fast accelerators. In this poster we present the basic elements of such an algorithm. First, communication performance is improved by using fewer MPI processes each with multiple cores and multiple GPUs, as well as coalescing multiple smaller messages into fewer but larger messages. Second, we overcome problem size limitations associated with the relatively small GPU memory by processing data from host memory asynchronously in smaller batches on GPUs. Third, we have used unique CUDA Fortran features to optimize data transfer between the CPU and the GPU, and to overlap these transfers with highly-optimized computations on the GPUs. Favorable performance is obtained for our new turbulence code up to a 18432^3 problem size on 3072 nodes of Summit, with a GPU to CPU speedup of 4.7 at 12288^3 (the largest problem size previously published in turbulence literature). OpenMP implementation of this algorithm is also under development. OpenMP and cudaFFT library interoperability has proven to be challenging especially when asynchronous execution is introduced on both programming models. We are also exploring how to manage buffers on the accelerator for copying a large host resident memory in batches to device memory without allocating and deallocating memory on the device and we are exploring solutions in the context of OpenMP 5.0 or extensions for OpenMP 5.1/6.0.
[bookmark: _GoBack]

An

asynchronous GPU algorithm for extreme scale fourier pseudo

-

spectral simulation of

turbulence

Kiran Ravikumar

, David Appelhans, P. K. Yeung, Oscar Hernandez

Georgia Institute of Technology

k

ravikumar7

@gatech.edu

Abstract

An asynchronous GPU

-

driven Fourier pseudo

-

spectral algorithm has been developed on Summit

to enable turbulence simulations at a problem size exceeding the prevai

ling state of the art. The

primary question is how to re

-

design communication

-

intensive applications for maximum benefit

from emerging pre

-

Exascale machine architecture, which is characterized by a shift from

massive CPU

-

based parallelism to heterogeneous

platforms with fat nodes and fast

accelerators.

In this poster we present the basic elements of such an algorithm.

First,

communication performance is improved by using fewer MPI processes each with multiple cores

and multiple GPUs, as well as coalescing

multiple smaller messages into fewer but larger

messages.

Second, we overcome problem size limitations associated with the relatively small

GPU memory by processing data from host memory asynchronously in smaller batches on

GPUs. Third, we have used uniq

ue CUDA Fortran features to optimize data transfer between the

CPU and the GPU, and to overlap these transfers with highly

-

optimized computations on the

GPUs.

Favorable performance is obtained for our new turbulence code up to a 18432^3

problem size on

3072 nodes of Summit, with a GPU to CPU speedup of 4.7 at 12288^3 (the

largest problem size previously published in turbulence literature). OpenMP implementation of

this algorithm is also under development. OpenMP and cudaFFT library interoperability has

proven to be challenging especially when asynchronous execution is introduced on both

programming models. We are also exploring how to manage buffers on the accelerator for

copying a large host resident memory in batches to device memory without allocatin

g and

deallocating memory on the device and we are exploring solutions in the context of OpenMP 5.0

or extensions for OpenMP 5.1/6.0.

An asynchronous GPU algorithm for extreme scale fourier pseudo-spectral simulation of

turbulence

Kiran Ravikumar, David Appelhans, P. K. Yeung, Oscar Hernandez

Georgia Institute of Technology

kravikumar7@gatech.edu

Abstract

An asynchronous GPU-driven Fourier pseudo-spectral algorithm has been developed on Summit

to enable turbulence simulations at a problem size exceeding the prevailing state of the art. The

primary question is how to re-design communication-intensive applications for maximum benefit

from emerging pre-Exascale machine architecture, which is characterized by a shift from

massive CPU-based parallelism to heterogeneous platforms with fat nodes and fast

accelerators. In this poster we present the basic elements of such an algorithm. First,

communication performance is improved by using fewer MPI processes each with multiple cores

and multiple GPUs, as well as coalescing multiple smaller messages into fewer but larger

messages. Second, we overcome problem size limitations associated with the relatively small

GPU memory by processing data from host memory asynchronously in smaller batches on

GPUs. Third, we have used unique CUDA Fortran features to optimize data transfer between the

CPU and the GPU, and to overlap these transfers with highly-optimized computations on the

GPUs. Favorable performance is obtained for our new turbulence code up to a 18432^3

problem size on 3072 nodes of Summit, with a GPU to CPU speedup of 4.7 at 12288^3 (the

largest problem size previously published in turbulence literature). OpenMP implementation of

this algorithm is also under development. OpenMP and cudaFFT library interoperability has

proven to be challenging especially when asynchronous execution is introduced on both

programming models. We are also exploring how to manage buffers on the accelerator for

copying a large host resident memory in batches to device memory without allocating and

deallocating memory on the device and we are exploring solutions in the context of OpenMP 5.0

or extensions for OpenMP 5.1/6.0.

