2018 Arm Limited
<

+

Agenda

* 9:00 Introduction

* 9:30 Remote Client Setup

e 9:45 DDT Getting Started

 10:30 15-minute break

* 10:45 Offline Debugging

e 11:15 Memory Debugging — Leaks and Errors
 12:00 Lunch

e 13:00 Performance Reports and MAP
* 14:30 15-minute break

* 14:45 GPU Debugging and Profiling

* 16:00 Discussion / Finish

2 Confidential © 2018 Arm Limited q r m

~ Performance Engineering
Methodology and Tools

arm

Welcome to the age of machine-scale computing

It’s dangerous to go alone! Take this.

30 years ago: human-scale computing

Cray 2:
e 4 vector processors
1.9 gigaflops (9.5 mflops/Watt)

4 Confidential © 2018 Arm Limited

Today: machine-scale computing

e — ——— ——— -—
> BT S o g ' -
BE BT e P e -

Summit:
. 2,282,544 cores
e 2,000,000 gigaflops (154 mflops/Watt)

arm

Your brain is no longer enough

No way around it, you need tools to achieve maximum performance.

e Supercomputers are now incomprehensibly complex.

Naive optimization may harm performance.

Performance engineering tools are essential for realizing performance at scale.

=— ITHE BRAIN

A7 —
< =

OF A GEEK

.;

L 13
D
\

N
h

5 Confidential © 2018 Arm Limited

arm

Your brain is no longer enough

No way around it, you need tools to achieve maximum performance.

e Supercomputers are now incomprehensibly complex.

* Naive optimization may harm performance.

* Performance engineering tools are essential for realizing performance at scale.

6 Confidential © 2018 Arm Limited q r m

Arm’s solution for any architecture, at any scale

Commercial tools for aarch64, x86 64, ppc64le and accelerators

Cross-platform Tools

arm
FORGE

DDT| |MAP

-
arm
PERFORMANCE
5 REPORTS

7 Confidential © 2018 Arm Limited

=

Arm Architecture Tools

-

arm
C/C++ & FORTRAN
COMPILER
- ==
-
arm A
PERFORMANCE
- LIBRARIES

arm
ALLINEA STUDIO

% C/C++ Compiler

% Fortran Compiler

¢ Performance Libraries
< Forge (DDT and MAP)

< Performance Reports

arm

arm
PERFORMANCE
REPORTS

Arm Forge = DDT + MAP

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

—+

. N B
Fully Scalable

° o
Very user-friendly

9 Confidential © 2018 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
« Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

DDT: Production-scale debugging

Isolate and investigate faults at scale

Which MPI rank misbehaved?

- Merge stacks from processes and threads
- Sparklines comparing data across processes

- Integrated source code editor
- Dynamic data structure visualization

How did it happen?
- Parse diagnostic messages
- Trace variables through execution

Why did it happen?
- Unique “Smart Highlighting”
- Experiment with variable values

10 Confidential © 2018 Arm Limited

What source locations are related to the problem?

Stacks (All)

Processes Function

150120 I_start
150120 I libc_start_main
150120 Zimain
150120 Zpop (POP.f90:81)
150120 Zlinitialize_pop (initial 20:119)
150120 Zinit_communicate (communicate f90:87)
150119] §--create_o:n_oommunicator (communicate f20:300)
| ¥ -reate_ocn_communicator (communicate f90:303)
Locals Current Line(s) I Curreni Stack I
._I Current Line(s) F X
Variable Name Value
n'l_ype m 2724
{

DDT: Feature Highlights

dit View Control Tools Window Help

Switch between ll» EERE e R

|| current Group: [AT <]

Focus on current: ¢ Group (Process ([Thread||[™ Step Threads Together |

MPI ranks and ™

Project Files

CIEEIE]
0/0/0/0/0/0/00

OpenMP threads

arch (Ctri+K

8 x| ¢ mainci) | ¢ hydro_godunovc(€ conservarc) I
S 60 c

st int Hoxt,

File View Cg

B ® Application Code
=

| [}
K Headers
=- ¥ Sources
Current Grou =
@ T cclockc

All

Create Group

Project Files

t int Hnyt,
t int Hoxyt,
t int slices,

_t uold[Hnvar

int &, 3, ivar, s;

@® [o MpiEnvironment.cc 3¢ l ™ |atticeData.cc 3 | £ xyzpart.c 3

Search (Ctrl+K) 1 LN 546 if (allpicks[i].val != -1)
547 allpicks[ntsamples++] = allpicks[i];
- [template.cc (4] 548 }
f template_annotator.cc 549
-8 template cache.cc 550 /* Sort all the picks */
Memory Leak Report es, allpicks);
NS repent. - the atecanons.
AN 8 ranks. 5
- o al splitters. Set thq
Rank 0: 583.11 kB BN main (mmuR3.c:139) 1++
Rank 1: S8.71 kB W omoi_free_list_orow Flpicks[i*ntsamples/nf
Rank 2: 5871 kB evern_del_internal (misheap-internatt) | = IDX MIN;
Rank 3: S8.71 kB W N other = IDX_MAX;
Rank 4: 5871 ks -
Rank 5: $8.71 k8
Rank 6: 58.71 k8 T
Rank 7: $8.71 kB e allpicks */
™
@ ™ Vector3DHemeLb.cc 565 STOPTIMER(ctrl, ctrl->AuxTmr2);
- VelocityField.cc 564 STARTTIMER(ctrl, ctrl->AuxTmr3);
e ec I I Iel I |Ory &- ¥ Viewpoint.cc 565 a8
1 — ! I D 566 /* Compute the number of elements tha
Iea kS Input/Output | ints | hpoints | Stacks | ints | output | Logbook |
Stacks
Processes Threads Function

17220 117220]J='main (main.cc:37)

17220(117220 | B

cc:63)

El

(Simulati cc:154)

17220]17220[] EISimulati
=h Ib::

17220 117220 |

ryReader::LoadAndDecompose (GeometryReader.cc:14

1722017220] =h

ry::! yReader::OptimiseDomainDecomposition (Geometry|

17220117220
17220 |17220[|
17220 117220 1

11 Confidential © 2018 Arm Limited

17220]17220[| =h g p ::0p
= hemelb::geometry::decomposition::Optimised Decomposition::CallParmetis (O|

ry::dec omposition::OptimisedDecom

=/ ParMETIS_V3_PartGeomKway (gkmetis.c:90)
= libparmetis__Coordinate_Partition (:

127

¥/ Unexpected

O Show local ranks
@ Show global ranks

[7] Only ranks with messages

Select communicator

MPI_COMM_WORLD
MPI_COMM_SELF
MPI_COMM_NULL

Display pending | @ =

(€1l D]
256 [Show Diagram Key]
[Update]
Text Communicator Queue Pointer From (local) From (global) To (local) To (global)
1 |Receive: 0x8... MPI COMMUN... Receive 0x0 149 405 113 369
|
2 |Receive: 0x8... MPI COMMUN... Receive 0x0 16 272 193 449
|
MPI COMMUN.... Receive 0x0 11 11 44 44
4 Receive: 0x8... MPI COMMUN... Receive 0x0 174 430 252 508
|
Rocaiua: Ov8 MPICOMMUIN Racai ovn 130 305 151 anz

communications | ©

<value optimized out>
—1065353216
<value optimized out>

[ErFX]

@&

Visualise arrays

arm

Multi-dimensional Array Viewer

What does your data look like at runtime?

* View arrays
- On a single process
« Or distributed on many ranks

* Use metavariables to browse the array
- Example: Siand Sj
- Metavariables are unrelated to the variables in your
program.
- The bounds to view can be specified
- Visualise draws a 3D representation of the array

e Data can also be filtered
« “Only show if”: Svalue > 0 for example Svalue being
a specific element of the array

12 Confidential © 2018 Arm Limited

Multi-Dimensional Array Viewer

Array Expression: [tableslsiHSj]

v] [Evaluate]

Distributed Array Dimensions: How do | view distributed arrays?
Staggered Array What does this do?

Cancel

¥| Align Stack Frames

Range of $i Range of $ Auto-update
- [a] . ||
B ®:
-
only show if: | | See Examples
Data Table | Statistics |
=) Goto @ Visualize [Export - Full Window
i -
0 1 2 3 4 5 6 7 8 9 10 |11
io BBl 2 3 4 s| e 7 g 9o 10 1] 12
1 2 4 6 8| 10(12| 14| 16/ 18| 20| 22 24
2 3 6 9] 12| 15/ 18
<) 4 8| 12| 16 20| 24
4 5| 10| 15[20| 25| 30
L] 6| 12| 18| 24| 30| 36
6 7| 14| 21| 28| 35| 42
7 8| 16| 24| 32| 40| 48
8 9| 18| 27| 36| 45| 54
9 10| 20 30| 40| 50(60
10 11| 22| 33| 44| 55| 66

arm

MAP: Production-scale application profiling

|dentify bottlenecks and rewrite code for better performance

- Run with the representative workload you started with
Measure all performance aspects with Arm Forge Professional

[}
Examples: ::m?";'y?'m:m.a.ml\ P —
$> map -profile aprun -n 8 ./example oty [R . R, B oo s

$ > ma p - p r\O.F i 1 e j srun -n 6 . / exam p l e 14:59:09-14:59:44 (range 34.7735): Mean Memory usage 454.6 M; Mean MPI call duration 341.0 ms; Mean CPU floating-point 8.2 %; _Metrics,| Reset |

7 My codetoo @ |
Profiled: clover_leaf on 32 4 nodes, 32 cores (1 per process) Sampled from: Wed Nov 9 2016 15:28:37 (UTC) for 309.1s Hide Metrics... 87 b e P e
88 « module wall_excitation (._..n)
!

Application activity 100
101 [MODULE EXCITATION
102 !
Ierations /s s 103 @® module derivative (...e)
.) 140 e lleileiiasiiiiiiisioaoe
.) . § s 1 .
- 141 ! MAIN CODE
- 142
Grind time 143 =
D 144 use data_mc
145 use wall_excitation
Step time 146 implicit none
0008 B - B 147 include ‘mpif.h'
" _ ., " » L 148 double precision :: max_omx_dt,max_omy_dt,max_omz_dt,t, time_cal
15:28:37-15:33:46 (309.138s): Main thread compute 0.2 %, OpenMP 80.0 %, MPI 19.7 %, OpenMP overhead 0.1 %, Sleeping 0.1 % Zoom & 149 integer :: option,i,],k,nn, fwent, count_max,counter, ios,next_file_at,w_cnt(1:4)
150 character+*30 :: str,file_type,str_t,num_2_str
7 hydro 190 x Time spent on line 75 L1 151
B = . . = | <0.1% 152 call MPI_INIT(ierr)
3.2% 1..: flux_calc() -_] Breakdown of lho.’n.Z%:lr:o spent on this line: 153 call MPI_COMM_SIZE (MPI_COMM_WORLD,npro, ierr)
Eay z: SALLadvection() Calling other functions. 100,0°% e—]} |
3.3% 77 ALL reset_field()] Input/Output | Project Files Paraliel Stack View |
‘,— Parallel Stack View
Input/Output | Project Files OpenMP Stacks | OpenMP Regions | Functions | Total Time
OpenMP Stacks o ®|
Tot o ~ MPI Overhead Functi -l 63.0% | A .] /_cod
oiicor Sne fliunction(®ionte 16.9% el 5.3% . call mod_rank_read_file_all_its_own(str,nn,ios) ' Restart from last checkpoint My_code.f90:297
= 7 clover_leal 12.8% . 6.3% call velocity_solver My_code.f90:337
= hydro 18% <anknown> (no debug info)
51 2% pmesmmemessemsreees XL advection_module::advection 1.5%| 1.4% call cell_identifier My_code.f90:190
oy . g § 4%l |

13 Confidential © 2018 Arm Limited q r m

How MAP is different

MAP’s flagship feature is lightweight, highly scalable performance profiling

14

Confidential © 2018 Arm Limited

Adaptive

sampling

Thread

profiling

Integrated

Sample
frequency
decreases over
time

Same scalable
infrastructure as
Allinea DDT

Categorizes
instructions
sampled

Core-time not
thread-time
profiling

Part of Forge
tool suite

Data never grows
too much

Merges sample
data at end of
job

Knows where
processor spends
time

Identifies lost
compute time

Zoom and drill
into profile

Run for as long
as you want

Handles very
high core counts,
fast

Shows
vectorization
and memory

bandwidth

Detects OpenMP
issues

Profiling within
your code

arm

Arm Performance Reports

Characterize and understand the performance of HPC application runs

l"’
Commercially supported
by Arm

O

Accurate and astute
insight

5%

Relevant advice
to avoid pitfalls

15 Confidential © 2018 Arm Limited

Gathers a rich set of data

- Analyses metrics around CPU, memory, 10, hardware counters, etc.
- Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

- Analyses data and reports the information that matters to users
- Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users” workflows

- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (e.g. continuous integration)
- Can be automated completely (no user intervention)

arm

Arm Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /
arm =i .
PERFORMANCE ./Bin/low_freq/../../../../Input/input_250x125_corner.nml | A breakdown of the 16.2% 1/0 time:

REPORTS 2 noc.ies (8 physical, 8 logical cores per node) Time in reads 0.0% |
15 GiB per node
16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% N
node-1 .
Thu Jul 9 2015 10:32:13 Effective process read rate 0.00 bytes/s |
;65/ 57§°"d5 (about 3 minutes) Effective process write rate 1.38 MB/s I

in/../Src

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

- Time spent running application code. High values are usually good.
Com pUte 20.6% This is very low; focus on improving MPI or 1/O performance first
63.2 Time spent in MPI calls. High values are usually bad.
M PI -2% _ This is high; check the MPI breakdown for advice on reducing it
0 16.2% . Time spent in filesystem 1/0. High values are usually bad.
I/ : This is average; check the |/0 breakdown section for optimization advice

16 Confidential © 2018 Arm Limited q r m

Arm Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report.

Multi-threaded

parallelism

B

CPU

A breakdown of the 91.2% CPU time:

Single-core code
OpenMP regions

Scalar numeric ops

SIMD

30.6% H
%

9.5% |
Falal-TA]

"/ parallelism

Vector numeric ops

Memory accesses

The per-core perform|
identify time-consum
performance.

No time is spent in v
compiler's vectorizat
be vectorized.

MPI

Of the 41.3% total time spentin MPI calls:

Time in collective calls

Time in point-to-point calls
Estimated collective rate
Estimated point-to-point rate

1/0O

A breakdown of how the 53 9% total I/O time was spent:

Time in reads
Time in writes
Estimated read rate|
Estimated write rate|
Most of the time is ¢
transfer rate. This n]

inefficient access pq
write calls are affect|

Memory
Per-process memory usage may also affect scaling:

160 Mb [N

Mean process memory usage

Peak process mem(

Peak node memory Lustre

The peak node men
the total number of
processes and morg

All of the time is spent in col
This suggests a significant Iq
synchronization overhead. Y|
MPI profiler.

17 Confidential © 2018 Arm Limited

100.0% []

0.0% | o | Load

407 bytes/s L imbalance

0 bytes/s |

OpenMP
A breakdown of the 99.5% time in OpenMP regions:
Computation 58.9% [N PR
Synchronization 41.1% IR

Physical core utilization 100.0% Il
System load 99.7% HH ——

Significant time is spent synchronizing threads in parallel regions.
Check the affected regions with a profiler.

This may be a sign of overly fine-grained parallelism (OpenMP
regions in tight loops) or workload imbalance.

Lustre file operations (per node)

OMP

efficiency

System
usage

Mean write |
Peak write 14y Ene rgy
Mean file op A breakdown of how the 32.3 Wh was used:
Mean metad| cPu 61.9% W
System 38.1% I
Mean node power 94.1W [N
Peak node power 93.0wW [N

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

arm

Forge and Performance Reports at ORNL

* Machines
- Titan
¢ Summit
- Wombat
 Your laptop

 User Guides

« https://www.olcf.ornl.gov/software package/forge/

« https://www.olcf.ornl.gov/software package/arm-
performance-reports/

18 Confidential © 2018 Arm Limited q r m

https://www.olcf.ornl.gov/software_package/forge/
https://www.olcf.ornl.gov/software_package/arm-performance-reports/

Arm Forge Quick Start |
Tool cheat sheets

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

Arm DDT cheat sheet

Start DDT interactively, remotely, or from a batch script.

* Load the environment module:
$ module load forge

* Prepare the code:
$ cc -00 -g myapp.C -0 myapp.exe
$ ftn -00 -g myapp.f -0 myapp.exe

e Start DDT in interactive mode:
$ ddt aprun -n 8 ./myapp.exe argl arg2 ..

* Or use reverse connect:

- Connect the remote client (or launch “ddt” on the login node)
« Run the follow command, or edit a job script and submit:
- $ ddt --connect aprun -n 8 ./myapp.exe argl arg2 ..

e Offline mode
- $ ddt --offline aprun -n 8 ./myapp.exe argl arg2 .. (see ddt--help for more options)

20 Confidential © 2018 Arm Limited q r m

Arm MAP cheat sheet

Generate profiles and view offline

e Load the environment module
S module load forge

* Prepare the code
$ cc -03 .. -g myapp.c -0 myapp.exe
$ ftn -03 .. -g myapp.f -o myapp.exe

* |Interactive (Collect and View)
$ map aprun -n8 ./myapp.exe argl arg2

e Offline: edit the job script to run Arm MAP in “profile” mode
$ map --profile aprun -n8 ./myapp.exe argl arg2

* View profile in MAP:

On the login node:
$ map myapp_Xp_Yn_YYYY-MM-DD_ HH-MM.map
(or load the corresponding file using the remote client connected to the remote system or locally)

21 Confidential © 2018 Arm Limited q r m

Arm Performance Reports cheat sheet

Generate text and HTML reports from application runs or MAP files

Load the environment module:
$ module load perf-reports
No need to prepare application
Run the application:
perf-report aprun -n 8 ./myapp.exe
e ... or if you already have a MAP file:
perf-report myapp 8p 1n YYYY-MM-DD HH:MM.txt
Analyze the results
$ cat myapp 8p 1n YYYY-MM-DD HH:MM. txt
$ firefox myapp 8p 1n YYYY-MM-DD HH:MM.html

22 Confidential © 2018 Arm Limited q r m

4 4 4 4 4 4 4 4 4
4 4 4 + 4 4 4 4 4
+ + 4 4 4 4 + 4 4
4 g 4 4 4 4 4 4 4 4
4 4 4 + 4 4 + 4 4
K B + - + K . + K
+ + + + + + + + +

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

The Forge GUI and where to run it

DDT and MAP provide powerful GUIs that can be run in a variety of configurations.

Remote client \ .~ On the head node
(remote launch + reverse . (interactive mode + reverse connect)
) I/ Public Network
connect

------ : _| Head MNode
S =

Private Network

" === o
Compute Node Comput¢ Node

Compute Node

Ultimately, that’s where the tools will run.
But what about the GUI?

24 Confidential © 2018 Arm Limited q r m

After connecting the client

Three options to proceed

Click run and launch via the
the GUI

Works well simple jobs

DDT can launch a batch
job for you

Can be tricky to
replicate complicated
launch environments or
flags

25 Confidential © 2018 Arm Limited

Edit a batch script to use
ddt --connect

Best option for complex
batch scripts

Also for long running
non-interactive jobs

. $MODULESHOME/init/bash
module load forge
ddt --connect aprun ..

Use ddt --connect from an
interactive session

Useful if you want to try
many runs within
different launch
options/environments

arm

Launching the Forge Remote Client

The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
- Searching for “Arm Forge Download” will typically take you here
https://www.olcf.ornl.gov/tutorials/forge-remote-client-setup-and-usage/

Connect to the cluster with the remote client
- Open Forge Remote Client
- Create a new connection: Remote Launch = Configure = Add
- Hostname: <username>@titan.ccs.ornl.gov

- Remote installation directory: /sw/xk6/forge/18.2.2/slesll _binary
= You can also get the above path by: module load forge/18.2.2; echo $DDT_HOME
- Connect!

- Training material: ~nforr/training/arm-tools-workshop.tar.gz

26 Confidential © 2018 Arm Limited q r m

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://www.olcf.ornl.gov/tutorials/forge-remote-client-setup-and-usage/

Working with the queue

27

Connect the remote client

In a terminal, SSH to Titan and launch and interactive session
-gsub -I -A <account> -q debug -1
nodes=1,walltime=01:00:00

module load forge/18.2.2
Launch aprun command prefixed with ddt --connect

Confidential © 2018 Arm Limited

arm

)T Getting Started = |
Crash and hang

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

C=AxB+C

Simply multiply and add two matrices

Algorithm

1. Rank O (RO) initialises matrices A, B & C

2. RO slices the matrices A & C and sends
them to Rank 1...N (R1+)

3. RO and R1+ perform the multiplication
R1+ send their results back to RO
5. RO writes the result matrix C to file

29 Confidential © 2018 Arm Limited

arm

Fix a simple crash in a MPI code

Simple matrix multiply and add? No problem! Except that it crashes...

Exercise Outline Initial Result: Crash!

e ObJECtIVES 0 johlino2@johlin02-VM: ~/MUG18/01_walkthrough/1_crash
johlin02@johlin02-VM:~/M 91_walkthrough/1_crash$ make
H [P i -g -ffast-math - DDEBUG -std=c99 mmultl.c -o mmultl c.exe -1m
° DISCOVGI’ Arm DDT S Interface mpif9@ -g -ffast-math -DDEBUG -cpp mmultl.f9@ -o mmultl_f90.exe -1m
johlin02@johlin®2-VM:~/MUG18/01_walkthrough/1_crash$ mpirun -np 4 ./mmultl_c.exe
H H H : 0: Size of the matrices: 64x64
- Interactively debug a crash in a MPI application o: Initlalizing matrices...

@8: Sending matrices...

@: Processing...
b commands [johlin@2-vM:mpi_rank_@][error_sighandler] Caught error: Segmentation fault (signal
3: Receiving matrices...

2: Receiving matrices...

$ ma ke 1: Receiving matrices...

2: Processing...

[johlin@2-VM:mpi _rank 2][error_sighandler] Caught error: Segmentation fault (signal 11)

_— 1: Processing...
$ ap run n 4 " /mmu-l'tl—c " exe [johlin@2-VvM:mpi_rank_1][error_sighandler] Caught error: Segmentation fault (signal 11)
Observe crash
$ ddt __ConneCt " /mmu -l'tl—c " exe CLEANING UP REMAINING PROCESSES
YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
Observe Cause Of CraSh YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)

This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions
johlin®2@johlin@2-VM:~/MUG18/01_walkthrough/1_crashs S [}

BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
PID 9160 RUNNING AT johlin®2-VM
EXIT CODE: 139

30 Confidential © 2018 Arm Limited a r m

Answer: Fix incorrect limits on k-loop

Incorrect limits lead to invalid memory access

Before After

164 do i=0,size/nslices-1 164 do i=0,size/nslices-1

165 do j=0,size-1 165 do j=0,size-1

166 res=0.0 166 res=0.0

167 do k=size,sizexsize 167 do k=0,size-1

168 res=A(ixsize+k)*B(k*size+j)+res 168 res=A(ixsize+k)*B(kxsize+j)+res
169 end do 169 end do

170 C(ixsize+j)=res+C(ixsize+j) 170 C(ixsize+j)=res+C(ixsize+j)

171 end do 171 end do

172 end do 172 end do

31 Confidential © 2018 Arm Limited q r m

Problem #2

Fixing the crash reveals another issue Program now hangs

* Run the program again, and found out
why the program now hangs

* Either launch again with DDT

* Or launch without, and attach

- Ensure your nodes file is set to
SDDT_HOME/titan.nodes in the options dialog

- Click attach, from the welcome page. This will may
result in SSH prompts as DDT scans the other Titan
login/batch nodes, before detecting your job

- Alternatively, launch: ddt --connect --attach-
mpi=<aprun-pid>

: Size of the matrices:

: Initializing matrices...
: Receiving matrices...

: Receiving matrices...

: Receiving matrices...

: Sending matrices...

: Processing...

: Processing...

: Processing...

: Sending result matrix...
: Sending result matrix...
: Receiving result matrix...

0
0
1
2
3
0
1
0
2
1
2
0

32 Confidential © 2018 Arm Limited a r m

Answer: Fix incorrect limits on i-loop

Incorrect limits on i-loop lead to unmatched MPI_Send

Before After

73 do i=1,nproc-2 73 do i=1,nproc-1

74 call MPI_Send(mat_a(slicexi), slice, & 74 call MPI_Send(mat_a(slicexi), slice, &
MPI_DOUBLE, i, 100+i, & MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, sizexsize, & 75 call MPI_Send(mat_b, sizexsize, &
MPI_DOUBLE, i, 200+i, & MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slicexi), slice, & 76 call MPI_Send(mat_c(slicexi), slice, &
MPI_DOUBLE, i, 300+i, & MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr)

77 end do 77 end do

33 Confidential © 2018 Arm Limited q r m

4 4 4 4 4 4 4 4 4
4 4 4 + 4 4 4 4 4
+ + 4 4 4 4 + 4 4
I D b i
4 4 4 +gg 4 4 4 4 4
4 4 4 + 4 4 + 4 4
K B + - + K . + K
+ + + + + + + + +

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

Run DDT in offline mode

Run the application under DDT and halt or report when a failure occurs.

* You can run the debugger in non-interactive mode

For long-running jobs
For automated testing, continuous integration...

* To do so, use the following arguments:

$ ddt --offline --output=report.html aprun ./myapp.exe
--offline enable non-interactive debugging
- -output specifies the name and output of the non-interactive debugging session
Html
Txt
Add --mem-debug to enable memory debugging and memory leak detection
Add --break-at=<location> to report stacks and variables at certain locations
Add --trace-at=<location>,variablel,variable2 to evaluate variables/expressions at certain

locations
See --help for more information

35 Confidential © 2018 Arm Limited q r m

Offline Log

Snippet from an earlier crash

Process stopped in mmult (mmult1.f90:168) with signal SIGSEGV (Segmentation fault).
Reason/Origin: address not mapped to object (attempt to access invalid address)

Additional Information

V Stacks

mmult (mmultl f90 168)f"res—A(1*51ze+k)*B(k*51ze+j)+res

| 165. do j=0,size-1

| 166. res=0.0

| 167. do k=size,size*size

| 168. res=A(i*size+k)*B(k*size+j)+res
| 169. end do

| 170. C(i*size+j)=res+C(i*size+j)
1171, end do

36 Confidential © 2018 Arm Limited q r m

When to use offline debugging

* |f you're not available
-e.g. when you have a long wait in the queue

* Scriptable
- Debug many jobs
- Nightly builds / Continuous integration

37 Confidential © 2018 Arm Limited q r m

. Memory Debugging

Allocation tracking and guard pages

arm

DDT’s heap memory debugging framework

On Titan, we need to link DDT's memory debugging libraries

e Caveat: Does not work with PGl and Fortran
e Handled by helper module loaded after the forge module
emodule load forge/18.2.2; module load ddt-memdebug

39

* No linking required for dynamically linked binaries (handled by LD_PRELOAD)
e For static binaries, check the Forge user guide

Run ureload the memory debugging IibrarylLanguage: [C++, threads :}
Run: mpirun -n 8 ./mmult2 c.exe Details Note: Preloadi.ng onl.y worlgs for programs Iinlged ggain;t shared libraries. If
Command: [EEIT N n e I);gl:arrzr%gar:lrjgIllsy-statlcally linked, you must relink it against the dmalloc
OpenMP Heap Debugging
¥ CUDA: Track allocations: enabled, Detect invalid accesses: disabled Details Fast Balanced Thorough Custom
v Track GPU allocations (also enables CPU memory debugging) @D : ‘ ‘ ‘ ‘
Detect invalid accesses (memcheck) - Enabled Checks: |basic 'More Information
¥ Memory Debugging: Fast, 1 guard page after, Backtraces, Preload Details... Heap Overflow/Underflow Detection
Plugins: none Details _ ¥/Add guard pages to detect out of bounds heap access

Guard pages: Agd guard pages: After :

Advanced
Check heap consistency every @ heap operations

Wh e n m a n u a I I | n k| ng |S USEd’ v/Store stack backtraces for memory allocations
u ntl C k IIP re I Oa dll bOX Only enable for these processes:

Help ||Options Quit

[100% | Select All || x2 |[x0.5 || 1%

Confidential © 2018 Arm Limited D
Help

arm

Three levels of heap debugging overhead

40

Confidential © 2018 Arm Limited

basic

eDetect invalid pointers
passed to memory
functions
(e.g. mallog, free,
ALLOCATE,
DEALLOCATE,...)

check-fence

*Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect

*Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodness

eMemory usage,
statistics, etc.

free-blank

eOverwrite the bytes of
freed memory with a
known value.

alloc-blank

elnitialise the bytes of
new allocations with a
known value.

check-heap

eCheck for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy

eAlways copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

check-blank

*Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs

*Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

See user-guide:
Chapter 12.3.2

arm

Tri-diagonal solve: segmentation fault

Crashing with invalid memory reference. Sounds like a job for a memory debugger!

Exercise Outline

* Objectives
- Use DDT’s memory debugging features
- Use guard pages to find out-of-bounds access
* First lets run without DDT
$ module swap PrgEnv-pgi PrgEnv-—-gnu
$ make
$ aprun -n 4 ./trisol.exe

* Now let’s see where it crashes in DDT (without
memory debugging)

$ ddt ——connect aprun -n 4
./trisol.exe

41 Confidential © 2018 Arm Limited

Invalid memory access

arm

Let’s try memory debugging

Relink

* module load ddt-memdebug
* make clean; make

* ddt --connect aprun -n 4
./trisol.exe

* Launch without guard pages enabled
and “Fast” heap debugging.

* The program seems to run fine now -
why?

42 Confidential © 2018 Arm Limited

And launch in DDT
T

in02/MUG18/03_mem_debugging/trisol.exe Detail
. Application: johlin02/MUG18/03_mem_debugging/trisol.ex v ‘?‘
Arguments: v
stdin file: = |

! Working Directory:
¥ MPI: 4 processes, MVAPICH 2
Number of Processes: | 4 5

Implementation: MVAPICH 2 | Change...

¥ Preload the memory debugging library Language: | C++, threads s \
Note: Preloading only works for programs linked against shared libraries. If your

aaaaa

mpirun arguments

OpenMP
cuba

¥ Memory Debugging: Fast. No guard pagsj
Submit to Queue]

Environment Variables: none

Plugins: none

Help Options

- Fast Balanced Thorough Custom

3
Enabled Checks: | basic

~ Advanced

Heap Overflow/Underflow Detection
Add guard pages to detect out of bounds heap access

Guard pages: | r‘{ Add guard pages

Check heap consistency every \ %1 heap operations
| Store stack backtraces for memory allocations
Only enable for these processes:

arm

Guard pages (aka “electric fences”)
I N

4 kBytes MEMORY ALLOCATION
(typically)
| | | |

MEMORY ALLOCATION

GUARD GUARD
PAGE PAGE

GUARD GUARD
PAGE PAGE

* A powerful feature...:

* Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

e ... tobe used carefully:
* Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

 Beware the additional memory usage cost

43 Confidential © 2018 Arm Limited a r m

OK, this time enable guard pages

The code appears to run fine when launched from the debugger! Why?

Add one guard page after every allocation Gotcha! Write OOB at res(k+2)

¥| Preload the memory debugging library Language: [C++. threads]]

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library

manually.
Heap Debugging F trisol.fo0 X F check.foo X |
Fast] Thoraugh Custom I3 REAL (KIND(1.0D0)), ALLOCATABLE :: res(:), temp(:)
iz
ED ' ' ' ' = 13
Enabled Checks: | basic More Information 1 ':1 : Initialise
16
Heap Overflow/Underflow Detection 17 n = SIZE(a,1) Program Stopped
18 ALLOCATE (res(n),temp(n .
+| Add guard pages to detect out of bounds heap access 19 - . ((n) p(n}) Processes 0-3:
. =] . 20 B IF (me.LE.0) THEN . I
Guard pages: Add guard pages: = femp - b Memory error detected in check (check.f90:27):
22 ELSE . .
——Ravanced = temp - ZERO read/write beyond end of allocation
Check heap consistency every :E] heap operations ‘i END IF Suppress memory errors from this line in future

26 B DO k = 0, block_size l B> Continue l i Pause l

¥ Store stack backt fol llocati
ore stack backtraces for memory allocations = Tes (k9] - k-2 |
Only enable for these processes: 28 END DC
29

| 100% [Select All | [x2 |[x0.5 |[1%

[o [coneel |

44 Confidential © 2018 Arm Limited q r m

~ Memory Leak Detection
... and DDT in Offline Mode

arm

Three levels of heap debugging overhead

46

Confidential © 2018 Arm Limited

basic

eDetect invalid pointers
passed to memory
functions
(e.g. mallog, free,
ALLOCATE,
DEALLOCATE,...)

check-fence

*Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect

*Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodness

eMemory usage,
statistics, etc.

free-blank

eOverwrite the bytes of
freed memory with a
known value.

alloc-blank

elnitialise the bytes of
new allocations with a
known value.

check-heap

eCheck for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy

eAlways copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

check-blank

*Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs

*Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

See user-guide:
Chapter 12.3.2

arm

Possible memory leak

Program is working great, but sometimes | run out of memory?

Exercise Outline

* Objectives

- Use DDT in offline mode

- Explore DDT’s report logbook
* Commands

$ make

$ ddt ——offline \
——output=report.html \
aprun -n 4 \
./mmult3_f90.exe

$ xdg—open leak-report.html
Observe report

47 Confidential © 2018 Arm Limited

DDT in offline mode (--offline)

johlino2@johlin02-VM: ~/MUG18/01_walkthrough/3_memory_leak

johline2@johlin02-VM:~/ 1_walkthrough/3_memory_leak$ ddt --offline --output=report.html --mem-

debug -n 4 ./mmult3_f90.
Arm Forge 18.2.1 - Arm DDT

Debugging : [home/johlin@2/MUG18/01_walkthrough/3_memory_leak/mmult3_f90.exe

MPI implementation : Auto-Detect (MVAPICH 2)
* number of processes : 4

* number of nodes zjll

Memory debugging enabled : Yes

* setting : Fast

* check bounds : Off

: Size of the matrices:

: Initializing matrices...
: Receiving matrices...

: Receiving matrices...

: Receilving matrices...

: Sending matrices...

: Processing...

: Processing...

: Processing...

: Processing...

: Sending result matrix...
: Sending result matrix...
: Receilving result matrix...
: Sending result matrix...
: Writing results...

: Done.

0
0
1l
2
z)
0
1
2
0
z)
1
2
0
z
0
0

offline log written to: '/home/johlin®2/MUG18/01_walkthrough/3_memory_leak/report.html’

johlin02@johlin®2-VM:~/MUG18/01_walkthrough/3_memory_leak$ xdg-open report.html

arm

View the memory leak report to see unfreed allocations

Allocations that are not freed when the program exits could be leaks

Click allocation to see function source

All 4 ranks:
Legend

Rank 0: 151.18 MB S P mmult3 (mmult3.f90:62)
Rank 1: 173.39 kB Other

Rank 2: 173.39 kB

Rank 3: 173.39 kB

Source
v allocate(mat b(0:size*size-1))
59. if(myrank==0) then
60. allocate(mat_a(0:size*size-1))
61. allocate(mat_b(0:size*size-1))
62. allocate(mat c(0:size*size-1))
63.
64. print *,myrank,": Initializing matrices..."

48 Confidential © 2018 Arm Limited

Review source code to verify leak

[reportlogbook A WA sohn
< C O filey///home/fjohlin02/MUG18/01_walkthrough/3_memory_leak/report.html#leaks * © @ O N O :

W Arm } HalHigdonTrair [P Mail-John.Linf: [P Calendar-John § Mission Contro! § Issue Navigato B Other bookmarks

Memory Leak Report

This report shows unfreed memory allocations when the program finished executing. Clicking an item in the bar chart below will show additional details about the allocations, including
where they were allocated.

All 4 ranks:
Legend
Rank 0: 151.18 MB [B mmuit3 (mmult3.f90:62)
Rank 1: 173.39 kB Other
Rank 2: 173.39 kB
Rank 3: 173.39 kB

Allocation data can also be exported to CSV format.

Largest allocation call path at [mmuilt3 (mmuit3.f90:62)] on [rank 0]:
1 unfreed allocation (75.50 MB in total)

Function Source
#0 mmult3 (mmult3.f90:62)

v allocate(mat_b(0:size*size-1))

59. if(myrank==0) then

60. allocate(mat_a(0:size*size-1)) |
61. allocate(mat_b(0:size*size-1))

62. allocate(mat_c(0:size*size-1)) |

rint *,myrank,": Initializing matrices...” |

#1 main (mmult3.f90:2) » use mpi
#2 _ libc_start_main (libc-start.c:291)

#3 _start

-

DDT can also track leaks via the GUI

To see the equivalent of a leak report

* “Current Memory Usage” in the GUI
shows all current, unfreed allocations

* To see something like the offline leak

report, stop the program just before exit
- Enable Control -> Default Breakpoints -> Exit

« Run program to "exit”

« Open “Current Memory Usage”

49 Confidential © 2018 Arm Limited

Also...

“View pointer details” allows you to see
where pointers were allocated, freed,
and whether they point to a valid
memory location

Memory tracking also works for GPU
allocations made with cudaMalloc

arm

Another leak...

* Use either the GUI or a leak report to track down and fix the memory leak in the
“memory-leak-mandel” exercise.

50 Confidential © 2018 Arm Limited q r m

+

+

+

+

+

+

Profiling with MAP

...and Performance Reports

+

+

Confidential © 2018 Arm Limited

+

+

+

+

R

arm

Profiling on Titan

Static binaries

* Need to link MAP libraries
* S module load forge/18.2.2
* S make-profile-libraries

* Generates libraries for your MPI and
outputs instructions on how to link.

52 Confidential © 2018 Arm Limited

Dynamic binaries

No need to link

MAP will preload libraries into the

binaries automatically

We’ll use this method today by adding -

dynamic to the link line

arm

Improve performance |
Efficient memory access
Confidential © 2018 Arm Limited q rrm

Fix inefficient memory access pattern

Revisiting the matrix multiply crash example

Exercise Outline

* Objectives

- Discover Arm MAP’s interface

- Gather initial profiles of a MVAPICH2 application
¢ Commands

$ make

$ map ——profile aprun -n 4 \
./mmult2_f90.exe

$ map mmult2_190_4p*x.map
Observe profile

54 Confidential © 2018 Arm Limited

Initial Result: SLOW

johlino2@johlin02-VM: ~/MUG18/01_walkthrough/2_memory_accesses
johlin02@johlin02-VM:~/MUG18/01_walkthrough/2_memory_accesses$ map --profile -n 4 ./mmult2_f90.exe
Arm Forge 18.2.1 - Arm MAP

Profiling : [home/johlin@2/MUG18/01_walkthrough/2_memory_accesses/mmult2_f90.exe
Allinea sampler : not preloading

MPI implementation : Auto-Detect (MVAPICH 2)

* number of processes : 4

* number of nodes o

* Allinea MPI wrapper : not preloading

: Receilving matrices...

: Size of the matrices:

: Receilving matrices...

: Receilving matrices...

: Initializing matrices...
: Sending matrices...

: Processing...

: Processing...

: Processing...

: Processing...

: Sending result matrix...
: Sending result matrix...
: Sending result matrix...
: Receilving result matrix...
: Writing results...

: Done.

il
0
2
2]
0
0
1
2
0
&
2
1
&
0
0
0

MAP analysing program...

MAP gathering samples...

MAP generated fhome/johlin®2/MUG18/01_walkthrough/2_memory_accesses/mmult2_f90_4p_1in_2018-08-05_23-0
2.map

johlin02@johlin®2-VM:~/MUG18/01_walkthrough/2_memor

arm

Initial profile
Find the hotspot: look for the line with the highest core time.

mmult2_f90_4p_1n_2018-08-05_23-02.map - Arm MAP - Arm Forge 18.2.1

Fle Edit View Metrics Window Help

Profiled: mmult2 f90.exe on 4 processes, 1 node Sampled from: Sun Aug 5 2018 23:02:02 (UTC-04) for 5.28 Hide Metrics...
B T
CPU floating-point 1 i FE :: 0 = - & c:lE F .. B =
vex el m EER e et Bl ghd 1R T=HSFST . Time spent on line 168 53]
164 © do i=0,size/nslices-1 Breakdown of the 62.2% time spent on this line:
165 H do j=0,size-1 Executing instructions 100.0% I
- g'_a_ - IES;OI&IG i . Calling other functions 0.0%
167 do k=0, size-
62.2% JINE. 168 Tes A (i size k) B(F M n instructions executed:
169 end do Scalar floating-point 0.0%
0.4% , | 170 C{i*size+j)=res+C(i* Vector floating point 27.0% I
171 end do Scalar integer 3.6%H
: 7 ::' Eenc :] 0 Vector integer 0.0%
— Memory access* 78.4% I
|| InputiOutput | Project Fles | Wi Thread Stacks | _Functions | ~— Branch
e Other instructions 0.0%

Total core time A MP Function(s) on line Source
¢ mmult2 rogran

i * 69.1% memory access instructions, 9.3% implicit memory accesses in other

= mmult linined]

62.2% N

0.4% = v 1 other H H M 4 4
233% —33% | mp.fnalze. instructions, also counted in their categories
7.5% . = mwrite [infined]

2.6%4 2.6% mpi_recy nk, MPI_CC

1.2% F] 1.2% mpi_send_ rank, MPI_CO

2.7%a . # 11 others

Showing data from 988 samples taken over 4 processes (247 per process) Arm Forge 18.2.1 & Main Thread View

55 Confidential © 2018 Arm Limited q r m

Memory access patterns

e Data locality
- Temporal locality: use of data within a short time of its last use
- Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {
for (loop=0; loop < 10; loop++) {
.= .o X[1] ..

}

Spatial locality example
for (i=0 ; i < N*s; i+=s) {
.= . X[1] ..

}

56 Confidential © 2018 Arm Limited

arm

Memory Accesses and Cache Misses

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[i*n+]]=..

i=0,n=4 A

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[F*n+i]=..

57 Confidential © 2018 Arm Limited a r m

Answer: Transpose matrix and interchange loops

Transposing the matrix improves locality = performance

Before

164 do 1=0,si1ze/nslices-1

165 do j=0,size-1

166 res=0.0

167 do k=0,size-1

168 res=A(ixsize+k)*B(k*size+j)+res
169 end do

170 C(iksize+j)=res+C(ixsize+j)

171 end do

172 end do

58 Confidential © 2018 Arm Limited

After

165 do i=0,size/nslices-1

166 do j=0,size-1

167 res=0.0

168 do k=0,size-1

169 res=A(ixsize+k)*transB(j*size+k)+res
170 end do

171 C(ixsize+j)=res+C(ixsize+j)

172 end do

173 end do

arm

Final profile
About 3x faster

Before
. —

CPU floating-point e - _ - iL L .

0% R | LT IR T P N T o T AN EEEE r L e o

59 Confidential © 2018 Arm Limited q r m

4 4 4 4 4 4 4 4 4
4 4 4 + 4 4 4 4 4
+ + 4 4 4 4 + 4 4
4 gg 4 4 4 4 4 4 4
4 4 4 + 4 4 + 4 4
B B + 0 + . B + B
+ + + + + + + + +

Confidential © 2018 Arm Limited

arm

4 4 4 4 4 4 4 4

Can we improve 1/0 performance?

RO responsible for all file I/O after R1+ return results. Surely we can do better?

Exercise Outline Performance report shows MPI bound

* Objectives

- Use MAP’s | / Op rofilin g features Ihome/johlin02/MUG18/01_walkthrough/5_MPI_imbalance/mmults_fg0.exe ~ COMPute
1 node (2 physical, 2 logical cores per node) I
. arm 4 processes !
- Use performance reports to quantify speedup P REPORTS B A © 2918 0012 (UTC.00) |
« Commands omeloninG2MUGLEN1. walkthroughs_MPI_imbalance =
$ make
$ map ——pro file a prun —n 4 \ Summary: mmult5_f90.exe is MPI-bound in this configuration
-/mmult5_t190.exe compute [N i

Time spent in MPI calls. High values are usually bad.

$ pe rf_ re po rt mm u -l_t 5_1: 90_4 p* ™ ma p MPI 53.0% - This is high; check the MPI breakdown for advice on reducing it
1/O ; Time spent in filesystem 1/O. High values are usually bad.
$ xdg-open mmult5_f90_4p*.html -

This is very low; however single-process /O may cause MP| wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MP| section below.

61 Confidential © 2018 Arm Limited q r m

Initial profile shows MPI_Finalize dominates

Time spent in MPI_Finalize is due to load imbalance in file I/O

mmult5_f90_4p_1n_2018-08-06_00-37.map - Arm MAP - Arm Forge 18.2.1
File Edit View Metrics Window Help

Profiled: mmult5 f90.exe on 4 processes, 1 node Sampled from: Mon Aug 6 2018 00:37:12 (UTC-04) for 12.6s Hide Metrics...
Main thread activity
- . 100 T = —
CPU floating-point | t.I_IEL# _‘TI'II.T b“ﬁqﬁ&!}lr%@" F. T
2.6% H}(H, ” A ik
0 Jl 1) 1
Memory usage = g ‘
60.8 MB
0 |

00:37:17-00:37:24 (7.541s, 59.8% of total): Main thread compute 25.9 %, MPI 73.6 %, File I/O 0.5 %, Synchronisation %

F mmult5.f90 X

if (myrank==0) then

*,myrank,": Writing results..."
11 mwrite (size, mat_c, filename)
print *,myrank,": Done."

23.6%

e (mat_a)
mat_b)
e (mat_c)

[»]

71.4% S 119 call MPI Finalize (ierr)

(]

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks ®
Total core time A MPI Function(s) on line Source Position
= # mmult4 program mmult4 mmult5.f90:1
71.4% S T mpi_finalize_ call mmult5.f90:119
= mwrite [inlined] call mwrite(size, mat_c, filename) mmult5.f90:111
23.6% #_gfortran_st_set_nml_var_dim, _gfortra... write(12, "(E10.3)", advance="no"), A(i*size+i) mmult5.f90:153
<0.1% , 1 other
2.7%) mmult [inlined] call mmult (size, nproc, mat_a, mat_b, mat_c) mmult5.f90:95
1.9% 4 1.9% mpi_send_ call MPI_Send(mat_c, slice, MPI_DOUELE, 0, 500+myra.. mmult5.f90:106
0.4% , 1 other
Showing data from 1,404 samples taken over 4 processes (351 per process) Arm Forge 18.2.1 2 Main Thread View

62 Confidential © 2018 Arm Limited

arm

Answer: improve scalability of 1/0 routines

Use MPI-10O to let all MPI ranks write their results to file simultaneously.

Before
97 if(myrank==0) then
100 do i=1,nproc-1
101 call MPI_Recv(mat_c(slicexi), slice, &
MPI_DOUBLE, &i, 500+1i, &
MPI_COMM_WORLD, st, ierr)
102 end do
103 else
106 call MPI_Send(mat_c, slice, MPI_DOUBLE, &
0, 500+myrank, &
MPI_COMM_WORLD, ierr)
107 end if
109 if(myrank==0) then
111 call mwrite(size, mat_c, filename)
113 endif

63

Confidential © 2018 Arm Limited

After

102

103

104

105
106

call MPI_FILE_OPEN(MPI_COMM_WORLD, &

filename, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierr)
call MPI_FILE_SET_VIEW(fh, &

0_MPI_OFFSET_KIND, MPI_DOUBLE, &

MPI_DOUBLE, 'native’, &
MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE_AT(fh, disp, mat_c, &
slice, MPI_DOUBLE, st, ierr)

call MPI_BARRIER(MPI_COMM_WORLD, ierr)

call MPI_FILE_CLOSE(fh, ierr)

arm

New approach: use MPI-10 for file output

Each MPI rank writes its results to it’s own part of the output file

Before: runtime 13 seconds

arm
PERFORMANCE
REPORTS

/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance/mmults_f0.exe ~ Compute
1 node (2 physical, 2 logical cores per node) |
4 processes !

johlin02-VM
Mon Aug 6 2018 00:37:12 (UTC-04)

13 seconds v
/home/johlin02/MUG18/01_walkthrough/5_MPI_imbalance MPI .

Summary: mmult5_f90.exe is MPI-bound in this configuration

Compute 46.7% -
vl sso

110 0.3%

Time spent running application code. High values are usually good.
This is low; consider improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad.
This is high; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad.
This is very low; however single-process I/O may cause MPI wait times

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MP| section below.

64 Confidential © 2018 Arm Limited

After: runtime 5 seconds (2.6x speedup)

arm

PERFORMANCE

REPORTS

/homeljohlin02/MUG18/01_walkthrough/5_MPI_imbalance/solution/mmuilts_fo0.&"Pute

1 node (2 physical, 2 logical cores per node)

4 processes

johlin02-VM

Mon Aug 6 2018 00:34:17 (UTC-04)

5 seconds TN
Ih(:m'eljonlinOZIMUG18/01_walkthroughlS_MPl_imbalancel MPI - e}
solution

Summary: mmulté_f90.exe is Compute-bound in this configuration

compute 7+ |

MPI
I/0

20.1% -

5.3% l

Time spent running application code. High values are usually good.
This is high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.
This is low; this code may benefit from a higher process count

Time spent in filesystem 1/O. High values are usually bad.
This is low; check the I/O breakdown section for optimization advice

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU section below.
As little time is spent in MPI| calls, this code may also benefit from running at larger scales.

arm

Final profile shows balanced 1/0 and compute dominates

New approach is about 3x faster

mmulté

File Edit View Metrics Window Help
Profiled: mmulté fo0.exe on 4 processes, 1 node Sampled from: Mon Aug 6 2018 00:34:17 (UTC-04) for 4.
Main thread activity

CPU floating-point .]

60.7 % B int
0 —_ = =
Memory usage —-
87.6 MB . = %

00:34:17-00:34:21 (4.834s): Main thread compute 74.2 %, MPI 20.1 %, File /O 5.3 %, Synchronisation 0.4 % Zoom &] =0

¥ mmult6.fo0 X Time spent on line 96 B ®

size size 1))

- - *| Breakdown dﬂu 70.6% time
slice-1)) spent on this
print Re matrices..." Executing instructions ~ 0.0%
pousLE, o, imyrank, M e Calling other functions 100.0%
200+ st, lerr)
myra ierr)
call mmult nproc, mat_a mat mat_c
rint *,myrank,”: Writing results...®
disp = slice*myrank
3 fh, ierr)
ierr)
108 @ #1f FULLDEBUG (T) =
5= -
| Input/Output | Project Files ~ Main Thread Stacks | Functions |
Main Thread Stacks
Total core time A MP Function(s) on line Source Position
= # mmultd sol program ms ol mmult6.fo0:1

70.6% . mmult [inlined] mmult6.f90:96

14.6% E.. 14.6% mpi_recv_ y mmult6.f90:89

5.3% - mpi_file_open_ mmult6.f90:102

1.9% T 1.9% mpi_recv_ mmult6.f90:90

1.9% - 1.9% mpi_send_ mmult6.f90:79

1.2%,, & minit mmult6.f90:68

1.1% + minit call minit(size, mmult6.f90:73

1.1% = minit call minit(size, mmult6.f90:69

24% ., | + 6 others

Showing data from 844 samples taken over 4 processes (211 per process) Arm Forge 18.2.1 2 Main Thread View

65 Confidential © 2018 Arm Limited q r m

GPU Debugging

With DDT and MAP

+

+

Confidential © 2018 Arm Limited

+

+

+

+

arm

GPU Debugging

For many aspects, debugging on the GPU is very similar to debugging on the host
- Adding breakpoints

- Stepping through code

- Inspecting variables, arrays, etc
 Tracking memory

- Memory error checking

e But there are important differences
- Stepping will step the entire warp
- Memory error checking is provided via cuda-memcheck

67 Confidential © 2018 Arm Limited q r m

GPU Profiling

* Time spent waiting for accelerators
- Determined by time spent in the CUDA (OpenACC, etc) API calls.

* GPU metrics - include:
-« Percentage of time spent in global memory accesses
« GPU temperature
- Power consumption

e CUPTI data

- Which kernels were running and when
« On-GPU profile data

68 Confidential © 2018 Arm Limited q r m

Thank You

Danke

Merci

157159

HYMES arm
Gracias

Kiitos

ZArEL| CF

Jeddlq

NTIN

69 Confidential © 2018 Arm Limited

